Using Pedagogical conlexts

 to explore Mathematics: A Parallelogram Task in Teacher EducationNick Wasserman Teachers College, Columbia University
Rulgers Universily, 14 November 2014

Mathemalics and Teaching

(Advanced)
Mathematical horizon

Makhemakical Knowledge for Teaching

- Mathemakical Terrikory
- Teachers' Makhematical Work
(Curricular)
Mathematical horizon

Local (epsilon) neighborhood of the mathematics being taught

PCK

- Pedagogical Content Knowledge is primarily described as some melding of Mathematical and Pedagogical Knowledge - a subject-specific pedagogy.

Incegraled Knowledge

- Mathematical/Pedagogical knowledge that is meaningfully integrated:
- How does teacher education promote integration of mathematical and pedagogical knowledge?
- How does teacher education elicit the mathematical and pedagogical work of teaching?

Tasks in Teacher Education

- According lo Hebert \& Wearne (1993), "what students learn is Largely defined by the basks they are given" - which applies to prospective teachers as well
- Tasks become che mediating col for teachers' Learning; the quality of instruction and the success of the tasks depends on whether they unfold in ways Chat allow prospective teachers ko learn through them (e.g., Kilpalrick el al, 2001)

Prominent Perspective

- There seems to be a prominent perspective on tasks in teacher education designed that promote developing such integrated mathemalical/pedagogical knowledge:

Mathematical
Contexts

Mathematical Contexts

FRACTIONS

(Mathematical Context)

- Tasks in teacher education may look like:
- One student says that the fraction (shaded blue) is 2/3. How might you as the teacher respond?

- Another student says it is $3 / 4$, by drawing the following picture. Is the student correct? Explain. How would you justify this to the class?

Pedagogical Contexts

- What might tasks in teacher education look like that develop integrated mathematical/pedagogical knowledge from the flipped perspective?

Pedagogical Contexts

I. A Parallelogram Task

Pedagogical Context

- Recently, you introduced your class to the area formula for parallelograms, $A=b h$. You justified the formula by removing and relocaking a Eriangle, as below.

Pedagogical Context

- Students' conceplual underslanding aboul area remains somewhat fragile and needs to be continually associated with enumeraling square unils
- Students have difficully transferring "remove-relocate" argument to unusually call parallelograms (Wertheimer)
- Studenks have difficully underslanding that either length or width can serve as che base.

Discussion

- How might you approach preparing a lesson with these pedagogical considerations? Think about a task for students in a subsequent lesson.
- What might be important?
- What examples of parallelograms might you look at?
- What concepts might you emphasize?

Bill's Parallelogram

- Bill decides that he is going to model the Leaning Tower of Pisa with a parallelogram. However, he is having difficulty identifying dimensions to use. He would like every dimension (length, width, and both heights) to be integer values in addition, he would like the height(s) to "split" the base(s) at an integer value.

Bill's Parallelogram

- In other words, Bill wanks b1, b2, h1, h2, c, and d all to be inceger values.

- Find values of b1,b2,h1, and h2 that meet this purpose - make sure they are also plausible for the Leaning Tower of Pisa. (What's θ ?)

Bill's Purpose

- What might have been Bill's purpose for wanting a parallelogram with these constraints?

MaChemakical Work

- In general, what constraints on b1, b2, and θ (assume θ is the acute angle) result in such classes of parallelograms?
- b1, b2, h1, h2 are integers
- b1, b2, h1, h2, c, d are integers

Mathematical Work

- $\sin \theta=h 1 / b 2=h 2 / b 1$; since these are integer values, $\sin \theta$ is a rational number (between o and 1), which means there exist relatively prime m and n (with $m<n$) s.t. $\sin \theta=m / n$.

- Since $h_{1}=b 2(\mathrm{~m} / \mathrm{n})$ and $h_{2}=b_{1}(\mathrm{~m} / \mathrm{h})$ are also integers, then n must divide both b1 and b2.
- Therefore, for b1, b2, hi, hi to be integers, b1 and b2 must have a common divisor, n, and the acute angle must be such that $\sin \theta=m / n$ (for $0<m<n$).

Mathematical Work

- In order for c and d to also be integers, the value for n must be the hypotenuse length of a primitive pythagorean triple (e.9., 6, 12, 13). And the value for m must be one of the other two values in the triple (e.9., $6,12,13$).
- Thus, to construct a "Bill's Parallelogram":
- Pick a value for n, the hypotenuse of a primitive pythagorean triple; select a value for m, one of the other two values
 in the triple
- Select two multiples of n to be bI and bR

$$
\begin{aligned}
& n=13 \\
& m=12 \\
& b 1=66 \\
& b 2=196
\end{aligned}
$$

- Select an angle so that $\sin \theta=m / n$.

A Parallelogram Task

- This example used pedagogical contexts in teacher education tasks (such as the one described) as a means to explore mathematical considerations
- Such tasks in teacher education help reveal the mathematical work of teaching, in ways that promote integrated mathematical/pedagogical knowledge

II. Uses of Malhemalical Knowledge in teaching

Uses of Knowledge

- Decompressing
- Unpacking a topic's mathematical complexity in order $k o$ make it comprehensible
- Trimming
- Removing complexity while maintaining mathematical integrity
- Bridging
- Making connections across topics, assignments, representations, and domains

Uses of Knowledge

- Decompressing/Unpacking: Working with students' knowledge as it grows necessitates deconstructing teachers' own mathematical knowledge into less polished form, where elemental components are visible.
- 1005 as one-hundred five
- solving equations ko allow interpretation of the results $0=0$ or $0=3$
- Complexities are in a local (micro-level) neighborhood of the context being taught

Uses of Knowledge

- Trimming: Any concept can be taught in some intellectually honest way; carefully attending to ideas in a perhaps overly-polished form that removes or hides complexities with the intent of simplifying the concept:
- bad example: "multiplying makes bigger"
- slope of constant rate of change of linear functions in light of the ways it emerges as instantaneous in calculus
- Complexities are in a broader (macro-level) neighborhood of the context being taught

Micro-Level Trimming

- Bill's Parallelogram
- Mathematical issues related to area formulas, irrational lengths, piecing together partial squares, etc., are microlevel (local) complexities
- Intent was to remove/hide these complexities in order to further emphasize and make desired ideas clear, undistracted by aspects that may unnecessarily complicate

Macro-Level Decompressing

- Square Perimeter
- Perimeter as the sum of all sides is sufficient for polygons; but moving into circles complicates this idea in two ways: 1) multiplicative
reasoning (not additive); 2) indirect measurement
- Dave developed the following task when discussing the perimeter of a square in light of this

How much longer is the perimeter of the square compared to the "middle" length pictured?

Macro-level Decompressing

- Square Perimeter
- Mathematical issues related to perimeter, multiplicative reasoning (not additive), indirect measurement, etc., are macrolevel (local) complexities, e.g., circles
- Purposefully introduced (not removed) hidden) these complexities in order 6 prepare and unpack ideas for future developments of the concept, in ways intended to help students' transition

Navigating Complexities

- Conceptualizing Micro- and MacroLevels of Trimming and Decompressing in relation to the neighborhood of the mathematical complexities

	Trimming (Removing complexity)	Decompressing (Unpacking/Highlighting complexity)
	Micro-level Trimming	Micro-level Decompressing
	Macro-level Trimming	Macro-level Decompressing

TEACHERS COLLEGE COLUMBIA UNIVERSITY

Implicalions

- Part I: Tasks in teacher education that use pedagogical contexts to explore mathematical considerations promote integrated mathematical/pedagogical knowledge and reveal mathematical work of teaching
- Part II: 2×2 Framework for navigating mathematical complexities addresses both mathematical nature (local or distant neighborhood) and pedagogical responses (Erimming or decompressing), and may be useful tool for teacher education

Questions? Comments?

Thanks!

Nick Wasserman wasserman@kc.columbia.edu

