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While counting is simple enough, counting problems span the spectrum of difficulty. Although 
mathematicians have succinct categories for differing problem types, students struggle to model 
solving problems and to identify related problem structures. In a graduate course, K-12 
mathematics teachers (n=7) were introduced to combinatorial problems and then given a set of 
problems to solve and categorize. Results from this study specify ways that mathematics teachers 
who are also novice combinatorialists identified similarities between problems; two particularly 
difficult problems reveal poignant conceptions and explanatory categorizations. 

 

With increased emphasis on probability in K-12 mathematics education (e.g., Common Core 

State Standards, 2010), knowledge of combinatorial thinking is becoming increasingly necessary 

for both students and teachers (e.g., counting the cardinality of sets and sample spaces). 

Permutations and combinations, while frequently included in the curriculum, are often tangential 

topics in the scope of mathematics learning and only superficially discussed. Kapur (1970) noted 

potential benefits for integrating combinatorics into the K-12 curriculum, which include making 

conjectures, thinking systematically, one-to-one mappings, and many applications in physics, 

biology, and computer science. The rapid pace and content coverage required for state exams 

may be one source of blame for the current disintegration; however, another probable reason is a 

lack of knowledge or comfort with combinatorics on the part of teachers. Counting problems can 

be very challenging, and, while expert mathematicians have succinct categories for differing 

problem types, the process for learning to think combinatorially may not be so neatly packaged. 

This paper looks at categorizations for and conceptions of different combinatorics problems 

made by middle and secondary mathematics teachers; interesting findings and implications for 

the learning and teaching of combinatorial problems are discussed. 

Literature 
While counting is simple enough, counting problems span the spectrum of difficulty. Even 

authors of combinatorics textbooks weigh in on the difficulties encountered and insights required 

in such problems (e.g., Tucker, 2002). One issue in learning combinatorics is finding appropriate 

ways to model specific problems. Batanero, Navarro-Pelayo, & Godino (1997) discuss three 

different implicit models – selections, distributions, and partitions – for combinatorial problems; 
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furthermore, each model may result in different solutions based on other structures within in the 

problem. Identifying common structures, beyond modeling, within otherwise dissimilar problems 

also serves as a barrier to the learning and teaching of combinatorics (e.g., English, 1991) – 

despite the fact that expert mathematicians have identified nice categories for different counting 

problems according to the common 2x2 matrix of: with and without repetition, and ordered and 

unordered selection (see Table 1). While many problems may require more than one of these 

four approaches, even the basic distinctions between these problem types may not be fully 

understood by novice learners, particularly given the variety of modeling techniques. In fact, the 

connections (or lack thereof) made by novices as they solve counting problems can provide 

insight into common conceptions and misconceptions faced during the learning process.  
 

Table 1 
Selecting k objects from n distinct objects 
 Ordered (permutations) Unordered (combinations) 

Without 
repetition 

Arrangements 
n!

(n  k)!
= n×(n  1)×(n  2)×...×(n  k +1)  

Subsets 
n
k







= n!
k!(n  k)!

 

With 
repetition 

Sequences 

 
nk = n×n×n×...×n

k

 
Multisubsets 
n
k













=
k + n  1
n  1






 

Adapted from: Benjamin, A.T. (2009, p. 10) 
 

Identifying ways to apply knowledge from previously learned problems to another context is 

generally known as transfer. The roots of transfer extend back to behaviorism, where the idea 

was viewed as fundamental to the learning process. More recently, however, alternatives and 

adaptions to the traditional view of transfer have been articulated; in particular, Lobato (2003) 

characterizes actor-oriented transfer (AOT). AOT shifts the perspective regarding transfer from 

an  expert’s  view  to  a  learner’s  vantage  point,  which  results  in  paying  particular  attention  to  the  

ways that novices draw on their knowledge to solve new problems. Lockwood (2011) argues that 

AOT is a particularly poignant perspective for investigating combinatorial learning because the 

subject  depends  strongly  on  “establishing  structural  relationships  between  problems”  (p.  309).  

Given the importance of combinatorial thinking for and the current emphasis on understanding 

probability and statistics, efforts using AOT to investigate how such thinking develops, for 

students and teachers, are warranted. Specifically, this paper addresses the following question: 

How do middle and secondary mathematics teachers who are also novice combinatorialists 

categorize and conceptualize different combinatorial problems?  



   

Proceedings of the 40th Annual Meeting of the Research Council on Mathematics Learning 2013   147 
 

Methodology 
As a starting point for investigating how middle and secondary mathematics teachers that are 

novice combinatorialists categorize and conceptualize various problem types, two focus groups 

(e.g., Berg & Lune, 2012) were conducted (N=3 and N=4). The focus groups were conducted in 

conjunction with a graduate mathematics education course; all seven participants in the focus 

groups were practicing middle and secondary teachers with less than 6 years teaching experience 

and were enrolled in the course. The focus groups were preceded by a brief introduction to 

combinatorics problems in the course. While the middle and secondary teachers in the course 

had various mathematical backgrounds, none of the focus group participants had completed a 

course in combinatorics or discrete mathematics, making them novice combinatorialists.  

The brief introduction (~90 minutes) in the course consisted of two parts: 1) overt instruction 

on the addition principle; the multiplication principle; factorial notation; and dividing out 

extraneous solutions when order is irrelevant, including the n
k






 notation; and 2) approaches and 

solutions to six combinatorics problems, which were selected as being relatively common 

examples of the four types of problems from textbooks and other literature. The six problems 

(see Table 2) were presented to students as a way to expose them to various strategies for solving 

combinatorial problems; no structural characteristics of problems (e.g., order matters, repetition 

allowed)  were  mentioned  and  no  connections  between  “types”  of  problems  were  discussed.   

Table 2 
Description of Combinatorics Problems presented to participants with solutions 
Name Description Type & Solution 

Handshake If 10 people are at a party and everyone shakes hands with everyone else, 
how many total handshakes are given? 

Subset 
10
2






  

Password A password has to be 8 characters long and can use any of the 26 letters or 
the 10 digits (not case sensitive). How many different passwords are there? 

Sequence 
368  

Hot Dogs Hot dogs come in 3 varieties: Regular, Chili, Super. How many different 
ways are there to purchase 6 hot dogs? 

Multisubset 
3
6













=
6 + 2
2






  

Voting 
 

Two candidates are running for a club election. In the end, candidate A 
gets 4 votes and candidate B gets 5 votes. The moderator of the club, 
however, reads each vote out loud in order. How many different ways 
could he read out the votes? 

Subset 
9
4







=
9
5






  

States How  many  different  “words”  can  you  make  with  the  letters  (nonsense  
words count) in TEXAS? How about in MISSISSIPPI? 

Arrangement 
5!       11!

4!4!2!
   

Vowel You are creating 5 letter words that CAN repeat letters. How many words 
are there that have at least one vowel? 

Sequence 
265  215   
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After instruction in the course, the study participants (N=7) were randomly assigned to one 

of two focus groups (~120 minutes each), during which they worked together on an assortment 

of 12 combinatorial problems, ranging in type and complexity. Through the lens of AOT, 

participants were asked to: “Answer  each  of  the  problems  and  organize  them  into  ‘groups’  of  

problems that have similar methods for solving. For each group of problems, provide a brief 

description  of  how  and  why  the  problems  in  that  group  are  similar.”  The  twelve  problems,  along  

with the six original problems discussed in class, were printed on note cards to facilitate 

participants’  groupings.  While  focus  group  participants  worked  on  the  problems  and  discussed  

ideas with one another, the researcher took field notes about important comments or connections 

made by participants (i.e., occurrences of AOT), at times asking questions to uncover their 

thinking.  Participants’  mathematical  work  and  their  final  groupings/descriptions  were  collected  

for the study. For space purposes, only some of the problems are described in detail as they come 

up in the discussion and analysis; however, all problems are listed in Table 5 in the Appendix for 

reference. 

Findings 
The categorizations and descriptions created by two focus groups of middle and secondary 

mathematics teachers provide some information regarding AOT in the learning of counting 

problems. Generally, participants were able to make and describe the structural connections 

about permutations (Arrangements and Sequences), where order matters, much easier than 

combinations (Subsets and Multisubsets), where order does not matter. With the exception of the 

Vowel problem, which involved subtracting two sequences, groups were able to identify 100% 

of the possible Arrangement and Sequence problems (Table 3). The groups, however, also placed 

extra problems in these categories (reasons are discussed later). In addition, the focus groups 

were able to portray the structural similarities between these two problem types precisely: both 

descriptions explicitly state the appropriate characteristics related to order and repetition.  
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Table 3 
The  groups’  categories  and  descriptions  for  permutation  problems 
Type Problems Group 1 Group 2 

Arrangements 
(Ordered, 
without 
repetition) 

Problems 
States 
Netflix 
Plane Routes 
 

Problems 
States (Texas) 
Netflix 
Plane Routes 

Description 
-Each thing can 
only be in one 
place at a time (no 
repeats within set) 
-Order matters 

Problems 
States 
Netflix 
Plane Routes 
M/F Committees 

Description 
-The order of 
choices matters. 
-Choices cannot 
be repeated. 

Sequences 
(Ordered, with 
repetition) 

Problems 
Password 
MC Exams1 
Gift Cards 
4-letter words 
Vowel 

Problems 
Password 
MC Exams1 
Gift Cards 
4-letter words 

[in Cases] 
Marbles 

Description 
-Things being 
distributed to 
different positions 
-Order matters 
-One element can 
be repeated (people 
getting more than 
one card) 

Problems 
Password 
MC Exams1 
Gift Cards 
4-letter words 

[missing] 

Description 
-Certain amount 
of spaces and 
each space has 
the same 
number of 
options.  
-Options can be 
repeated. 

 

The two focus groups had much more difficulty categorizing and describing combination 

problems (Subsets and Multisubsets). While an apparent difference exists between the two 

groups in their ability to identify common structures between Subset problems (Group 2 

successfully accounted for 4 of the 5), both groups had particular difficulty with Multisubset 

problems (Table 4). Group 1 was unable to solve any of these problem types: indeed, the 

Marbles problem was incorrectly solved as a Sequence and the Hot Dogs problem, which was 

solved in class, was connected to simple Subset problems (the group did not appreciate the 

unique characteristics of the original problem, which was then translated through a stars and bars 

model to a simple Subset problem). Group 2 solved the Skittles problem and was able to connect 

it to the Hot Dogs problem; however, rather than focusing on the similar characteristics of these 

problems, their description for this category was procedural (see Table 4), which demonstrates 

less sophisticated expertise (e.g., Schoenfeld & Hermann, 1982) and indicates that learners may 

have difficulty identifying common structures within combination problems.  
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Table 4 
The  group’s  categories  and  descriptions  for  combination  problems 
Type Problems Group 1 Group 2 

Subsets 
(Unordered, 
without 
repetition) 

Problems 
Handshakes 
Supreme Court  
Voting 
MC Exams2 
M/F Committees  

Problems 
[missing] 

Supreme Court 
Voting 

[did not do] 
[did not do] 

Hot Dogs 

Description 
-How many 
different 
positions 
each element 
can occupy (9 
choose 6) 

Problems 
Handshakes 
Supreme Court 
Voting 
MC Exams2 
[in Arrangement] 

Description 
-Take the groups and 
choose a certain number. 
Using  the  “group”  
choose  “number”  gets  
rid of the duplicates. The 
duplicates exist because 
order does not matter. 

Multisubsets 
(Unordered, 
with 
repetition) 

Problems 
Hot Dogs 
Summed Digits 
Skittles 
Marbles 
Pizza Toppings 

Problems 
[in Subset] 

[did not do] 
[did not do] 

[in Sequence] 
[did not do] 

 

 Problems 
Hot Dogs 

[did not do] 
Skittles 

[did not do] 
[missing] 

Description 
-Broke into groups to 
account for no 
duplicates. The barriers 
separated into groups. 
Barriers made choosing 
easy and allowed for 
choosing all of one type. 

 

Lastly, Group 1 had an additional category; the two problems identified in this category, 

Vowel  and  MC  Exams2,  were  characterized  as  a  “Way  to  choose  a  minimum  number  of  

outcomes (1 vowel, 2 vowels, etc.). Elements have different characteristics, different groupings. 

Must  look  at  characteristics  as  a  subset  of  population.”  In  other words, they viewed problems as 

similar  if  they  were  best  solved  by  splitting  into  “cases,”  which,  for  both  problems,  was  an  

accurate statement and approach. This gives an indication that, at times, participants made 

connections according to similar processes instead of structurally similar characteristics. 

Discussion 
While many findings could be explored in more detail, we will focus on the insight gained 

from two particularly difficult problems: Gift Cards and Pizza Toppings. These results from the 

focus groups potentially shed some light on the learning and teaching of combinatorics problems. 

The Preferred Vantage Point 
The Gift Cards problem (i.e., How many ways can you distribute a $1, $2, $5, $10, and $20 

gift card to 8 friends?) is a Sequence problem, which, overall, students were able to solve. 

However, as an individual case, this problem caused surprising difficulty. (Solving the problem 

also caused over-generalization  to  other  problems  with  repetition:  “like  the  Gift  Card  problem,”  

Group  1’s  reason  for  including  the  Marbles  problem  as  a  Sequence.)  Both  groups  began  by  

drawing eight slots, one for each person. Their attempts to distribute the five gift cards to these 

eight people included, among others, 8
5






 (but  then  “a  person  could  get  more  than  one  gift  card”)  
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and 58  (but  then  “the  last  person  would  not  have  five  choices”).  Trying  to  count  which  person  
receives which gift card(s) causes modeling difficulties: each person could have anywhere from 

0 to 5 gift cards, and sequential models (i.e., eight slots) make the result for subsequent persons 

dependent on previous ones. To solve it from this perspective would require accounting for each 

of the seven distinct integer partitions of 5, and then distributing the gift cards according to these 

possible partitions, which becomes quite complex. It was not until the participants shifted from 

the perspective of the people, who are receiving gift cards, to the perspective of the gift cards, 

which are being distributed, that progress was made. This shift requires accounting for five gift 

cards (not eight people): each gift card can be given to any one of eight people (i.e., 85 ). 
However, taking the perspective of a gift card, as opposed to a person, is less natural – I could 

care less about to whom every gift card gets distributed than to which gift cards I am going to 

receive. The exceptional difficulty encountered by initially modeling the problem from the 

people’s  perspective  may  provide  some  implications  for  the  teaching  and  learning  of  counting  

problems. In particular, given that counting problems can frequently be modeled from both of 

two different perspectives, there seems to be a potential limitation or misconception associated 

with the preferred vantage point, characterized by novices having difficulty modeling 

combinatorics problems from the less natural (but combinatorially easier) perspective. 

Another Approach To Multisubset Problems 
The Pizza Toppings problem (i.e., How many ways are there to make a pizza with 2 

toppings, if the choices were pepperoni, olives, sausage, ham, mushrooms, and anchovies 

(double toppings allowed)?), technically, is a Multisubset problem, 6
2













=
2 + 5
5






, with repetition 

and unordered selection. However, participants split it into the sum of two Subset problems: two 

different toppings, 6
2






, and two identical toppings, 6

1





. In fact, this solution is insightful because 

it mirrors their (unsuccessful) attempts at solving other Multisubset problems, such as the 

Summed Digits problem (i.e., How many numbers between 1 and 10,000 have the sum of their 

digits equal to 9?). Participants tried to simplify by first selecting one, two, three, or four place 

values (Thousands, Hundreds, Tens, and Ones) on which to distribute the sum of 9 (the leftover 

place values being assigned a zero). For example, if you only choose one place value, 4
1






, then 

there is only one way to produce a sum of 9 for each (i.e., 9000, 0900, 0090, 0009); however, if 
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you choose three place values, 4
3






, then the sum of 9 can be accomplished by accounting for the 

partitions of 9 that use three values (i.e., (7, 1, 1), (6, 2, 1), (5, 2, 2), (5, 3, 1), (4, 3, 2), (4, 4, 1), 

(3, 3, 3)) and ordering those partitions to account for repeated values. This model for solving the 

Summed  Digits  problem  was  the  participants’  natural  approach,  though  quite  complex. In fact, 

after my own investigation, all Multisubset problems can be solved using this approach – 

although the numerous computations quickly become burdensome. The general solution to a 

Multisubset problem, n
k













=
k + n  1
n  1






, can be proved to be equivalent to: n

k  i




i=0

k  1


k  1
i






. The first 

term in this sum accounts for the various cases, e.g., 6
2






,
6
1






 in the pizza problem or 4

4





,
4
3






,
4
2






,
4
1






 

in the Summed Digits problem, and the second term quantifies the different ways each of those 

cases can occur within a given problem. 

Conclusion 
The findings from this study indicate that learners are able to structurally connect and 

characteristically conceptualize permutation problems (ordered selections) with more ease than 

combination problems (unordered selections). Likely, the sequential modeling of problems, 

which frequently is useful and naturally lends itself to ordered selections, may contribute to the 

difficulty accounting for unordered selections. The preferred vantage point for modeling may 

also  limit  novices’  abilities  to  solve  counting  problems;;  teachers  should  be  aware  of  both  

perspectives  and  a  learner’s  tendency  toward  the  more  natural  (or  preferred)  perspective. 

Multisubset problems were found to be the most difficult to solve; indeed, unordered selection 

with repetition requires a fundamental reconception about the problem. For example, for the 

Summed Digits problem to emphasize unordered selection with repetition would give peculiar 

solutions  like  HTTTHOThOH  (i.e.,  1,332).  Participants’  work  on  the  Pizza  Toppings  problem  

also indicates a different way to approach solving Multisubset problems, potentially more 

aligned  with  novices’  development.  While  the  counting computations in this method become 

increasingly prohibitive, the process could be used as a transitional stage that provides students 

with a natural way to connect to the problem and increasingly moves toward more efficient 

algorithms. Overall, the perspective from middle and secondary teachers within this study 

presents some ideas about the learning and teaching of counting problems that, while not claimed 

with absolute certainty, are of interest and merit further exploration and investigation. 
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APPENDIX 
 
Table 5 
Description of Combinatorics Problems in Focus Group for participants to solve 
Name Description Type & Solution 

MC Exams1 An exam contains 15 multiple-choice questions, each with 4 choices. How 
many possible ways of answering these 15 questions are there? 

Sequence 
415  
  

Plane Routes A plane starts in New York City and will travel to 7 different cities before it 
returns. How many different ways can the plane do this? 

Arrangement 
7! 

Supreme 
Court 
Decisions 

In how many different ways can the nine members of the Supreme Court 
reach a six-to-three decision? 

Subset 
9
6







=
9
3






  

Summed 
Digits 

How many numbers between 1 and 10,000 have the sum of their digits 
equal to 9?  

Multisubset 
4
9













=
9 + 3
3






  

Gift Cards How many ways can you distribute a $1, $2, $5, $10, and $20 gift card to 8 
friends? 

Sequence 
85   

Skittles 
16 skittles go into the small Halloween skittle bags. There are 5 colors to 
choose from in each bag – Red, Green, Yellow, Orange, and Purple. How 
many different possible bags of skittle are there? 

Multisubset 
5
16













=
16 + 4
4






  

The M/F 
Committees 
Problem 

There are 7 women and 4 men in a club. How many different 4-person 
committees have at least two women? 

Subset 
7
2






4
2







+
7
3






4
1







+
7
4







  

Netflix You have 24 different movies on your Netflix account. In how many 
different ways could you order them? 

Arrangement 
24! 

MC Exams2 An exam contains 15 multiple-choice questions, each with 4 choices. In 
how many of the possible ways to answer the exam are at least 10 correct? 

Subset 
15
k





k=10

15

   

4-letter words 
Suppose you make a 4-letter  “word”  (nonsense  words  count)  from  the  
letters A, B, C, D, and E, where you can repeat letters. How many different 
“words”  are  possible?   

Sequence 
54   

Marbles How many ways are there to distribute 25 indistinguishable marbles into 7 
different containers?  

Multisubset 
7
25













=
25 + 6
6






  

Pizza 
Toppings 

How many ways are there to make a pizza with 2 toppings, if the choices 
are pepperoni, olives, sausage, ham, mushrooms, and anchovies (double 
toppings allowed)? 

Multisubset 
6
2













=
2 + 5
5






  

 
 
 

 

 

  


