
Abstract—Most neural network (NN) models of human category 

learning use a gradient-based learning method, which assumes that 

locally-optimal changes are made to model parameters on each 

learning trial.  This method tends to underpredict variability in 

individual-level cognitive processes. In addition many recent models 

of human category learning have been criticized for not being able to 

replicate rapid changes in categorization accuracy and attention 

processes observed in empirical studies. In this paper we introduce 

stochastic learning algorithms for NN models of human category 

learning and show that use of the algorithms can result in (a) rapid 

changes in accuracy and attention allocation, and (b) different learning 

trajectories and more realistic variability at the individual-level. 

Keywords— category learning, cognitive modeling, radial basis 

function, stochastic optimization. 

I. INTRODUCTION

ECENT neural network (NN) models of classification 

learning, ALCOVE [1], RASHNL [2], and SUSTAIN [3] 

for example, share a number of common aspects, including 

multilayer architectures and learned dimensional attention 

weights as well as learned association weights between 

stimulus input nodes in the transformed feature space and the 

output category nodes.  One of these common elements is the 

use of gradient-based learning algorithms to adjust both 

association weights and dimensional attention parameters.  In 

this method, weights are adjusted based on discrepancies 

between a target training signal and the output activations on 

the current layer, by computing the gradient of the error 

function in the multidimensional parameter space.  This is 

accomplished by taking the partial derivative of the error 

function with respect to each of the network parameters 

(weights) in turn.  The algorithm then adjusts each of these 

weights proportionally to its partial derivative. This method is 

an effective means of finding optimal estimates for parameters, 

as long as the overall error function is not characterized by 

strong local minima.  Thus the algorithm has normative 

orientation/justification, i.e., it models how people “should” 
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learn or process information in terms of error minimization. 

But, is the gradient method plausible descriptively (i.e., does 

it describe how people actually learn)?  It seems implausible 

that people explicitly compute the gradient on each trial while 

attempting a categorization task. On the other hand, people’s 

general learning mechanisms might have evolved so as to 

approximate gradient learning.   

But in any case, we should first ask if the gradient-based 

learning algorithms are successful in replicating empirical data 

in human category learning.  Results in the literature 

demonstrate that these methods have been successful in 

reproducing group learning curves [1 – 3].  However, recent 

studies in our lab suggest these models may underpredict 

variability in individual-level empirical data, particularly 

differences in attention allocation measures [4 – 6].   

Another important issue raised by experimental 

psychologists in the field of cognitive modeling is whether 

learning happens gradually or in an all-nor-none fashion.  

Gradual learning curves have been reported for aggregated data 

and/or categorization tasks defined by complex concepts [1-3].  

On the other hand, when individual subjects were considered, 

the learning curves for some participants change suddenly, 

following an all-or-none like learning pattern, particularly for 

very simple categorization tasks  [7, 8].  Similarly, some 

empirical studies suggest that human’s attention allocation to 

individual dimensions can change quite rapidly [8, 9].  Most 

cognitive models based on gradient-based learning 

mechanisms appear to have difficulty reproducing such rapid 

changes in attention and classification accuracy.   

In the present research we (a) introduce alternative learning 

algorithms for NN models of classification learning, 

specifically stochastic learning algorithms based on simulated 

annealing, and then (b) test their descriptive validities in 

replicating empirical phenomena observed particularly at the 

individual level. 

II. STOCHASTIC LEARNING FOR MODELING HUMAN 

CATEGORY LEARNING

A. Qualitative descriptions 

Our proposed algorithm is based on a specific simulated 

annealing algorithm  [10].  In the present algorithm, initial 

association weights are randomly selected from a uniform 

distribution centered at 0, and initial dimension attention 

weights are equally distributed across all dimensions.  This 

equal attention allocation at the initial stage of learning is 
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motivated by the results of empirical studies [4, 8], according to 

which, many subjects tended to evenly allocate attention to the 

feature dimensions in the early stages of learning. In other 

words, the model does not have any prior information or beliefs 

about which feature dimensions are more informative than the 

others as observed in real human subjects in laboratory 

experiments. 

In our algorithm, at the beginning of each training epoch, a 

hypothetical “move” in the parameter space is computed by 

adjusting each parameter by an independently sampled term.  

These adjustment terms are drawn from a prespecified 

zero-mean symmetric distribution (e.g. Cauchy).  The move 

(i.e., the set of new parameter values) is then accepted or 

rejected, based on the computed relative fit of the new 

parameter configuration.  Specifically, if the new parameter 

values result in a better fit, they are accepted at the probability 

of one.  If they result in a worse fit, they are accepted with some 

probability P.  This probability is a function of a parameter 

called the “temperature”, which decreases across blocks 

according to the annealing schedule.  This particular annealing 

algorithm is relatively efficient, in that the adjustment in the 

network parameters is very rapid initially, and gradually 

decreases over learning blocks.  

Our present model may be interpreted as a model that 

randomly generates a hypothesis and then evaluates it.  In early 

stages of learning the present model is quite likely to produce 

“radical” hypotheses (i.e., the new set of hypotheses thus 

parameter values are very different from the currently valid 

hypotheses), and the probability of accepting a hypotheses set 

with worse utility could be relatively high.  But, as learning 

progresses, the widths of the random distribution and P

decrease, so that the model increasingly stabilizes its 

hypotheses and establishes more concrete concepts about the 

category.  In other words, the model’s concepts about the 

category evolve as learning progresses by permitting “good” 

hypotheses (and occasionally “bad” ones) to survive and using 

such enduring hypotheses as bases for generating a new set of 

hypotheses. 

1) Key Characteristics 

This learning algorithm can be applied to any feedforward 

neural network model of category learning.  We assume that 

there is no (back) propagation of classification errors in the 

present model.  Rather, we propose a very simple operation 

(i.e., comparison of two values) along with the operation of 

stochastic processes as the key mechanisms in human category 

learning. 

1. Initial network association weights (w) are set to small 

random values, and initial dimension attention weights ( ) are 

set equal across dimensions. 

2. In learning, the attention strengths and association weights 

are updated with a random move in the parameter space, based 

on a prespecified zero-mean symmetric distribution (e.g., the 

Cauchy distribution).   

3. If the new parameter configuration (or hypothesis) results 

in better categorization accuracy (based on a “mini-simulation” 

using the network model), then the hypothesis is accepted, and 

the new attention strengths and association weights replace the 

old values. In the case of a decrease in categorization accuracy 

due to the move, the hypothesis is accepted with some 

probability P (0<P<1).   

4. P is relatively large in the early stages of learning, but it 

decreases as learning progresses.  This decrease is associated 

with a decrease in a parameter called the “temperature”, by 

analogy with the physical process that occurs as a metal cools. 

Thus, the present model does not assume that learning is 

associated with monotonic increases in accuracy (and 

attention) or continuous search for better categorization 

processes by human.   Rather, it models random fluctuations or 

“errors” in people’s memory and learning processes, and how 

people utilize and “misutilize” such errors.  

As a test of these ideas, we have embedded the present 

learning algorithm into the ALCOVE model [1].  

III. ALCOVE 

ALCOVE [1], for Attention Learning COVEring map, is an 

exemplar-based multi-layer adaptive network model of 

categorization based in part on the Generalized Context Model 

or GCM [11].  The first layer of ALCOVE is a stimulus input 

layer. Each dimension has an attention strength ( i) associated 

with it.  The next layer in the network is the exemplar layer.  

Each node in this layer corresponds to an exemplar, described 

by its position in the multidimensional stimulus space, and 

receives input from the input layer.  The activation of each 

exemplar node is calculated based on its similarity to the 

presented stimulus:  

)||(exp
i

ijiij xch  (1)      

where ji is the value of exemplar node j on dimension i, xi is 

the activation of input feature dimension i, c is a constant called 

the specificity that controls overall attention, and i is the

attention strength for dimension i.  In ALCOVE, the attention 

strengths essentially stretch and shrink dimensions. 

The activity of the exemplar nodes is fed forward to the third 

layer, the category layer, whose nodes correspond to the 

categories being learned.  The strength of association between 

category node k and exemplar node j is denoted by wkj.  The 

activation of category node k is then computed as the sum of 

weighted activations of all exemplars, or  

j

jkjk hwy  (2) 

The probability that a particular stimulus is classified as 

category k, denoted as P(k), is assumed equal to the activity of 

category k relative to the summed activations of all categories, 

where the activations are first transformed by the exponential 

function [1]:  
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where is a real-value mapping constant that controls 

decisiveness of classification responses. 

The standard version of ALCOVE [1] uses a form of 

gradient descent for updating weights.  The error term is 

defined as the sum of squared differences between the desired 

and the predicted outputs:  
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Partial derivatives of the error function with respect to the 

association weights wkj and the attention strengths i are used to 

compute the weight updates: 
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where w and are the learning rates for the association 

weights and attention strengths, respectively.  It is this 

gradient-based learning method that we propose to replace with 

the stochastic learning method. 

IV. STOCHASTIC LEARNING ALCOVE 

Here, we have evaluated two applications of stochastic 

learning to ALCOVE:  one version in which we implement 

stochastic learning for adjusting both dimensional attention 

weights and the network association weights (ALCOVE-CSL, 

for “completely stochastic learning”), and one in which 

stochastic learning is used to adjust only the dimension 

attention weights in ALCOVE (ALCOVE-SAL, for “stochastic 

attention learning ”). Again, it should be noted that this learning 

algorithm is very general and can be applied to virtually any 

NN model of category learning. 

A.  ALCOVE-CSL algorithm 

STEP 0: Initialize: 

Problem specific parameters (T0, )

T0 : initial temperature. 

 :   temperature decreasing rate 

Association weights wkj,

wkj ~ U(MINw, MAXw).

where MINw and MAXw are minimum and maximum 

values for w.

Attention strengths i ,

i =1/I*(MAX  - MIN )+MIN , for all i = 1…I, where I

is the number of feature dimensions.   

Exemplar ji

ji = x*i,

where subscript * indicates unique patterns.

STEP 1: Calculate output activations 

J I

ijiikjk xcwO )||(exp  (7)

STEP 2: Calculate fit index for one training block: 

N

n

K

k

kk

t OdF
1 1

2)()(  (8) 

where wkj, i , K = # categories, N = # input in one block, dk

is a desired output for category node k.

STEP 3: Accept all weight and attention parameters (  & w) at 

the probability of: 

1

exp1)|(
t

At
At

T

FF
P  (9) 

if F(  t) > F(  A), or 1 otherwise, where F(  A) is the fit index for 

the previously accepted parameter set. 

STEP 4: Reduce temperature: 

tTT ot ,  (10) 

where  is the temperature decreasing function that take 

temperature decreasing rate, , and time t as inputs. 

STEP 5: Generate new w and

wMINwMAXyww A

kj

t

kj

MINMAXyA

i

t

i
 (12) 

where  

1115.0sgn
12u

T
Tuy  (13) 

Here, u indicates a random number drawn from the Uniform 

distribution. 

REPEAT Steps 1~5 until criterion is met 

B. ALCOVE with SAL 

Stochastic Attention Learning (SAL) incorporates both 

gradient and stochastic method for learning.  In particular, SAL 

updates its association weights using a gradient method 

(Equation 5), and attention strengths by the stochastic learning 

method, i.e.,  (12) & (13). 

Since SAL incorporates gradient learning for its association 

weights, the badness-of-fit index at time t is often less than that 
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at time t-1, even with an “inappropriate” random movement in 

attention allocation.  In other words, the present algorithm as 

described in the previous section would accept many useless 

moves for attention distribution, particularly in the early stages 

of learning. However, this seems both unnecessary and 

inefficient.  Thus, we modified SAL to include a threshold 

parameter , which controls for the probability of accepting 

new attention weight values, to make the model accept only 

moves that satisfy a prespecified criterion (i.e., above the 

threshold) for categorization accuracy. 

Thus for SAL, (9) becomes 

1

exp1)|(
t

At
At

T

FF
P  (14)   

if {F(  t)+ } > F( A), or 1 otherwise, where 

N
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C. Comparisons to the previous learning algorithm 

1) Gradient decent vs. Stochastic Learning   

There are several apparent differences between 

gradient-based and stochastic learning models.  Two 

differences relevant to cognitive modeling are (a) the rate of 

learning, and (b) utilization of collinear diagnostic dimensions.  

While learning curves for a cognitive model with a gradient 

decent method gradually change, a model with the stochastic 

learning methods could learn correct category membership 

either gradually, suddenly (e.g. all-or-none fashion), or in a 

combined manner, depending on the configurations of its free 

parameters (e.g., temperature decreasing rate).  Another related 

issue is that while a gradient decent method can be considered 

as a learning process searching for the new parameter set in the 

most effective direction at any given time (and with given 

information on hand), this stochastic learning may be 

considered as learning process characterized by (pseudo) 

random exploration of the stimulus space.  

When some diagnostic feature dimensions are highly 

collinear or correlated (i.e., flat minima), a gradient method 

would pay good amounts of attention to those collinear 

diagnostic dimensions, and the amounts of attention allocated 

to those dimensions would be similar.  Whereas, for the 

stochastic learning methods, many patterns of attention 

distribution can be expected for such loosely defined 

input-output relationship, in which many parameter 

configurations (i.e., association weights and attention 

distribution) can result in acceptable levels of classification 

accuracy.   Although it is not well understood how real humans 

would utilize or allocate attention to diagnostic collinear 

dimensions, one recent study [6], as discussed in next section, 

reported that people tend to allocate rather different amounts of 

attention to the collinear diagnostic dimensions, showing some 

individual differences.   

2) RULEX vs. Stochastic Learning 

One unique model of categorization utilizing learning 

algorithms other than gradient methods is RULEX [12].  In 

particular, it incorporates a sequential hypothesis-testing-like 

learning algorithm.  In its first stage of learning, RULEX tries 

to identify a categorization rule defined by a single perfectly 

predictive feature dimension, and the search process continues 

until all feature dimensions are tested.  In the second stage, it 

searches for (multiple) imperfect single dimension rules, 

followed by conjunctive rules in the third stage.  

Although, RULEX sounds plausible and it could replicate 

individual differences for several stimulus sets, it may be 

considered to be more normative than real humans in term of 

efficiency in information usage.   That is, RULEX predicts that 

people are always capable of identifying the minimal and 

sufficient numbers of diagnostic feature dimensions, and use 

only exactly the same diagnostic dimensions once they learned.   

Our present learning models’ take-all-or–none parameter 

updating strategy may be considered as a type of hypothesis 

testing learning model, which makes it similar to RULEX.  

However, its random search method, interpreted as 

unstructured hypothesis generation and search, is very distinct 

from RULEX whose hypothesis generation algorithm is very 

strategic and well structured.  Our present models can pay 

attention to any numbers of feature dimensions as long as the 

parameter configurations result in the acceptable categorization 

accuracies.  Thus, the stochastic learning methods can result in 

paying attention to irrelevant dimensions as long as its 

parameter configuration is associated with good classification 

accuracy.  This in turn may lead to “superficial” beliefs that 

some irrelevant dimensions are somewhat relevant to particular 

category concepts, apparently a common phenomenon in 

ordinary life (e.g., believing in jinx).  In other words, when 

there are several minima, which is probably true for real world 

category learning task, stochastic learning can result in several 

different learning trajectories and parameters configurations 

(i.e., association weight & attention allocation), corresponding 

to possible individual differences.   In contrast, RULEX would 

predict that people always pay attention to the least number of 

dimensions throughout the entire learning phase (i.e., if there is 

only one diagnostic dimension, it would never pay attention to 

more than one dimension in its entire learning process, because 

it starts making hypothesis that only a single dimension is 

diagnostic), which may be a too normative prediction in terms 

of efficiency of information usage. 

V. SIMULATIONS

In order to evaluate the ability of the stochastic learning 

algorithms to account for human data on classification learning, 

we conducted three simulation studies. In Simulation 1, we 

tested if the stochastic learning can replicate rapid changes in 

classification accuracy and attention allocation in category 

learning for a single simulated subject. In Simulation 2, we 

simulated the results of a recent empirical study on 

classification learning [5, 6] to see if the algorithm can 

reproduce individual differences in attention processes in a 
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classification task involving with stimuli characterized by 

highly collinear feature dimensions.  In Simulation 3, we 

examined if the algorithms accurately reproduce aggregated 

learning curves. 

The simulations reported below compare several 

ALCOVE-based models.  The main comparison we are 

interested in is to compare the performance of standard 

ALCOVE with ALCOVE incorporating stochastic attention 

learning (ALCOVE-SAL), and ALCOVE incorporating 

completely stochastic learning (ALCOVE-CSL).   However, 

for Simulation 2, we also investigate if individual differences 

could be otherwise accounted for within standard 

gradient-based ALCOVE.  To do this, we also tried another 

way (besides stochastic learning) of handling random 

individual differences within the ALCOVE model, namely by 

randomly varying individual learning rates.  This version of 

standard gradient-learning ALCOVE is referred to here as 

ALCOVE-RLR  (Randomize Learning Rate). 

A.  Simulation 1: Rapid changes in accuracy and attention 

In the present simulation study, we examined if stochastic 

learning algorithms can replicate rapid changes in classification 

accuracy and attention allocation as observed in some empirical 

studies [7 - 9].  Here, we used the simplest stimulus structure 

(T1) of Shepard, Hovland and Jenkins’ stimulus sets [13].  

Table I shows schematic representation of the stimuli used in 

the present simulation (i.e., T1).  For T1 stimulus set, only 

Dimension 1 (D1) is necessary and sufficient for perfect 

classification. The main goal of Simulation 1 is to investigate 

which learning algorithm is capable of reproducing 

psychological phenomena observed in Rehder and Hoffman 

[8], as described below, that used the same T1 stimulus set. 

There are two important observations reported by Rehder 

and Hoffman [8] that can help assess descriptive validity of 

cognitive models.  First, the study showed that people initially 

pay attention to all three feature dimensions, and then learn to 

allocate attention almost exclusively to the diagnostic 

dimension.   As Rehder and Hoffman [8] claimed, the results 

casts doubt about the descriptive validity of RULEX, which 

predicts people would initially pay attention to a single 

dimension or have and test a hypothesis that there was only one 

diagnostic dimension.  Second, when individual data were 

analyzed, sudden changes were observed for classification 

accuracies and attention distribution. More specifically, there 

were multiple plateaus in learning curves, suggesting that 

participants follow an all-or-none type of learning for this 

particular task.  This in turn casts doubt on backpropagation’s 

(i.e., gradient decent) gradual learning as a descriptive model of 

human category learning.  It should be noted, however, that this 

categorization task was very easy, and all-or-none type of 

learning trajectory may not be observed with more complex 

categorization tasks.  

1) Simulation Method 

Three ALCOVE-type models of category learning were 

evaluated in the present simulation studies, namely the standard 

ALCOVE, ALCOVE-SAL, and ALCOVE-CSL.  They were 

run in a simulated training procedure to learn the correct 

classification responses. ALCOVE was run for 50 blocks of 

training, where each block consisted of a complete set of the 

training instances, while ALCOVE-SAL and ALCOVE-CSL 

were run for 150 blocks.  For each model, the gradient or rate of 

change in attention allocated to Dimension 1 was calculated by 

subtracting the amount of attention allocated to Dimension1 at 

time t-1 from that of time t.  This measure was used as an index 

of how rapidly attention distributions changed. 

2) Results   

The results of one simulated subject for each model are 

shown in Fig. 1:  The models’ predicted classification 

accuracies, relative attention allocations to the three 

dimensions, and rates of change in attention allocated to 

Dimension 1, are plotted in the top, middle bottom row, 

respectively. Note that classification accuracies and attention 

distributions for accepted hypotheses (i.e., parameter 

configuration) were plotted. 

All three models learned to allocate the highest amount of 

attention to Dimension 1 and learned to ignore or pay less 

attention to Dimensions 2 and 3.  The rate of attention change 

for ALCOVE was very smooth and its magnitude was much 

smaller than those of ALCOVE-SAL and ALCOVE-CSL. 

ALCOVE-SAL and ALCOVE-CSL produced oscillating 

graphs (Fig. 1E &1I) with higher magnitudes of change, 

showing sudden shifts in attention distributions.  In addition, 

both ALCOVE-SAL and CSL also showed sudden changes in 

classification accuracies (Fig. 1D & 1G), replicating learning 

patterns observed in Rehder and Hoffman [8].  Note that for 

both stochastic learning ALCOVEs, the sudden changes in 

attention distributions and classifications accuracies were well 

synchronized.  Although ALCOVE-SAL and CSL replicated 

rather large sudden changes in attention allocation and 

classification accuracies, the learning curves changed 

somewhat gradually after the sudden changes.    

In sum, these results support the descriptive validity of our 

proposed stochastic learning algorithms, showing capabilities 

of reproducing rapid changes in attention allocation and 

classification accuracy observed in some empirical studies. 

TABLE I. SCHEMATIC REPRESENTATION OF STIMULUS SET USED IN 

SIMULATIONS 1 AND 3. 

Stimulus Category 

D1 D2 D3 T1 T2 T3 T4 T5 T6 

1 1 1 A B A A A A 

1 1 0 A B A A A B 

1 0 1 A A A A A B 

1 0 0 A A B B B A 

0 1 1 B A B A B B 

0 1 0 B A A B B A 

0 0 1 B B B B B A 

0 0 0 B B B B A B 
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B. Simulation 2: Individual Differences 

In this simulation study, we examined how the models 

account for individual differences in attention learning for 

categories defined by highly collinear feature dimensions. To 

do this, we simulated the results of an empirical study on 

classification learning, Study 2 of Matsuka [5].  In this study, 

there were two perfectly redundant feature dimensions, 

Dimensions 1 & 2 (see Table II), and those two dimensions 

were also perfectly correlated with the category membership. 

Thus, information from only one of the two correlated 

dimensions was necessary and sufficient for perfect 

categorization performance.  Besides classification accuracy, 

data on the amount of attention allocated to each feature 

dimension was collected in the empirical study.  The measures 

of attention used were based on feature viewing time, as 

measured in a MouseLab-type interface [14]. 

To summarize the empirical results that we are trying to 

simulate, 13 out of 14 subjects were able to categorize the 

stimuli almost perfectly (Fig. 2, Top right panel), and on 

average subjects paid attention to both of the correlated 

dimensions approximately equally (Fig. 2, Top middle panel).  

When Matsuka and Corter [5] analyzed attention data at an 

individual-level, they found that many subjects tended to pay 

attention primarily to only one of the two correlated 

dimensions, particularly in the late learning blocks (Fig. 2, Top 

right panel). This suggests that they tend to utilize the minimal 

necessary information for this task. 

1) Simulation method 

There were four ALCOVE-type models involved in the 

present simulation study, namely standard ALCOVE, 

ACLOVE with random learning rate (ALCOVE-RLR), 

ALCOVE-SAL, and ALCOVE-CSL. The final parameter 

values used for ALCOVE were chosen by a simulated 

annealing method [6, 10] to minimize the objective function 

(i.e., sum of squared error) in reproducing the classification 

accuracies by human subjects.  The same free parameter values 

for ALCOVE were used for ALCOVE-RLR, except for its 

learning rate for attention.  For each simulated subject, its 

attention learning rate was selected from the uniform random 

distribution with MIN = 0.00255, MAX = 0.0102, which were 

a half and twice the value of attention learning rate selected by 

the optimization process for the standard ALCOVE in the 

present simulation study, respectively.  For ALCOVE-SAL and 

CSL, the final parameter values were selected arbitrary based 

on the values identified for the standard ALCOVE. 

The four models were run in a simulated training procedure 

to learn the correct classification responses for the stimuli of the 

experiment. ALCOVE and ALCOVE-RLR were run for 48 

blocks of training, where each block consisted of a complete set 

of the training instances, while ALCOVE-SAL and 

ALCOVE-CSL were run for 500 blocks.  For each model, the 

final results are based on 50 replications. 

2) Results 

Fig. 2 summarizes the findings from the simulation study.  

The top row of this figure shows the empirical data from Study 

2 of Matsuka [4] (also reported in [5]), including the learning 

curve for overall classification accuracy (left panel), the 

attention learning curves (middle panel), and relative attention 

allocated to Dimensions 1 vs. 2 (the redundant diagnostic 

dimensions) in the late training blocks (i.e., the last half).   

Figure 1. The results of Simulation 1. A: predicted classification accuracy by ALCOVE, B: predicted relative attention allocation to the three feature dimension 

by ALCOVE; C: predicted rate of change in attention allocated to Dimension 1 by ALCOVE; D - E: predictions by ALCOVE-SAL; G - I by ALCOVE-CSL.

TABLE II: STIMULUS STRUCTURE USED IN STUDY 2 OF MATSUKA (2002)

Category Dim1 Dim2 Dim3 Dim4 

A 1* 1* 3 4 

A 1* 1* 4 1 

A 1* 1* 1 2 

B 2* 2* 2 1 

B 2* 2* 3 2 

B 2* 2* 4 3 

C 3* 3* 1 3 

C 3* 3* 2 4 

C 3* 3* 3 1 

D 4* 4* 4 2 

D 4* 4* 2 3 

D 4* 4* 1 4 

*Diagnostic feature 
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Results for each of the models are shown in the remaining 

rows.  Standard ALCOVE learned to allocate attention equally 

to the two diagnostic dimensions, but showed almost no 

inter-individual variability in classification accuracy nor 

attention.  In addition, it produced no intra-individual 

variability in the amount of attention allocated to Dimension 1 

and 2 (Fig. 2, Second row, last column).  In other words, in 

ALCOVE, every simulated subject paid exactly the same 

Figure 2: Results of Simulation 2.  The first row shows observed learning curve (left panel), observed dimensional attention allocation (middle panel), 

observed attention allocation to Dimension 1 (Y-axis) and 2 (X-axis) in the last half of the training block (right panel). The predictions by ALCOVE, 

ALCOVE-RLR, ALCOVE-SAL, and ALCOVE-CSL are shown in the 2nd, 3rd, 4th and 5th row, respectively.

International Journal of Computational Intelligence Volume 1 Number 1

40



amount of attention to the two diagnostic redundant 

dimensions.   

ALCOVE-RLR, using random learning rate for attention 

strengths, but still using the standard gradient learning 

algorithm, showed some inter-individual variability.   

However, this model, too, predicted that every simulated 

subject would pay exactly the same amount of attention to the 

redundant dimensions.  That is, the relative amounts of 

attention allocated to Dimension 1and 2 were directly 

proportional (Fiuge2, third row, last column). 

ALCOVE-SAL, the version of ALCOVE modified to 

incorporate stochastic learning of attention weights, showed 

much more variability among subjects in attention allocation, 

more closely resembling the empirical data.  ALCOVE-CSL 

gave similar results, but exhibited some minor differences from 

ALCOVE-SAL.   

In sum, the stochastic learning models were shown to be 

capable of reproducing individual differences/preferences on 

attention distributions to two feature dimensions that contain 

exactly the same information.  On the other hand, the 

gradient-based learning always used information from the two 

dimensions equally, not being able to reproduce the key 

psychological phenomenon in the present study. 

C. Simulation 3. Replication of Nosofsky et al. (1992) 

Thus far, we have shown that our proposed stochastic 

learning algorithms are successful for reproducing 

individual-level data (i.e. rapid change & individual differences 

in attention processes).  However, we have not explicitly tested 

the algorithms’ capabilities of reproducing aggregated data.  In 

the present simulation study, we simulated a classical study of 

categorization [13] which is often used as a benchmarking 

stimulus set [15].  The stimulus structures are shown in Table I.  

The results of previous empirical studies showed that Type 1 

(T1) was the easiest to learn to classify, followed by T2, T3, T4, 

T5, and T6 being the most difficult.  More precisely, Nosofsky 

et al. [15] showed that the numbers of error made (i.e., 

classification difficulties) for those stimulus structures were 

significant except T3, T4, and T5. 

1) Simulation method 

In the present study, we tested only ALCOVE-SAL and 

CSL, as the standard ALCOVE has previously been shown to 

be able to replicate the Shepard et al. results [15]. The two 

models were run in a simulated training procedure to learn the 

correct classification responses for the stimuli. ALCOVE-CSL 

was run for 250 blocks of training, where each block consisted 

of a complete set of the training instances, while 

ALCOVE-SAL was run for 150 blocks.  For each model, the 

final results are based on 500 replications. 

2) Results 

Fig. 3 summarizes the findings from the Simulation 3.  Both 

ALCOVE-CSL and SAL were able to reproduce the order of 

difficulty successfully.  That is ALCOVE-CSL and SAL find 

T1 to be the easiest, followed by T2, T3, T4, T5, and T6.    

VI. DISCUSSION AND CONCLUSION

Here we have investigated the possibility of using stochastic 

learning rather than gradient-based methods in neural network 

models of human classification learning.  In the present 

simulations we have explored the effectiveness of this method 

in several variants of the ALCOVE-type model [1].  Our main 

goals were to see if stochastic learning algorithms 1) were able 

to replicate rapid change in classification accuracy and 

attention processes, and 2) offered a better account of 

individual differences in classification accuracy learning 

curves and in final distribution of attention, particularly 

distribution of attention to two perfectly correlated dimensions.  

The simulation studies showed that the new algorithms are 

satisfactory in these regards.   

Stochastic learning algorithms have other desirable 

properties as well. It could be argued that stochastic learning 

may be more psychologically plausible than gradient-based 

methods, which require more mental effort and assume that 

optimal adjustments are made to the vector of parameters on 

each trial. One caveat to these results is that the stochastic 

learning algorithms learn more slowly than the standard 

gradient methods in categorization tasks with relatively small 

(both number of stimulus feature dimensions and number of 

unique exemplars) and well-defined stimulus sets that are 

usually used in laboratory experiments.  However, for more 

realistic category learning involving complex category 

structures and/or stimuli with many feature dimensions, 

stochastic learning may be able to learn faster than ordinary 

gradient type learning. 

A.  Application for GECLE modeling 

Matsuka [16] introduced a framework for modeling human 

category learning named GECLE, based on radial basis 

functions.  One main strength of their modeling approach is the 

flexibility of its attention mechanisms, namely the use of the 

Mahalanobis distance function (which is able to pay attention 

to correlated dimensions) for calculating similarity to 

exemplars, localized receptive fields (i.e., each exemplar or 

prototype can have a uniquely shaped and oriented receptive 

field), and a variety of choices in the activation transfer 

Figure 3.  Results of Simulation 3. Both ALCOVE-SAL and 

ALCOVE-CSL were able to reproduce the order of difficulty successfully 

reported in Shepard et al. [13] & Nosofsky et al. [15]. 
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function.  However, since the model uses a gradient method for 

updating association weights, attention strengths, and locations 

of reference points (i.e., exemplars or prototypes), its activation 

transfer function is constrained to be a differentiable function.  

However, the use of our derivative-free stochastic learning 

algorithm can eliminate the constraints and make the model 

more flexible. 

B. Distribution of random numbers 

In the present research, the random moves in parameter 

space were drawn from the Cauchy distribution, mainly 

because its fatter tails are more likely than the Gaussian 

distribution to produce the rapid and/or large shift in attention 

allocation that has been reported by some empirical studies.  

However, with a proper experimenter-defined parameter 

setting (e.g., initial temperature & temperature decreasing rate), 

such shifts in attention might have been achieved with the 

Gaussian distribution.  Moreover, it may be possible that shifts 

could be drawn from other types of distributions, including 

rectangular, skewed, or multi-modal distributions.  Further 

simulation and empirical studies seem useful for investigating 

this issue. 
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