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An Efficient Metric Combinatorial Algorithm for Fitting 
Additive Trees 

James E. Corter 
Teachers College, Columbia University 

A new combinatorial algorithm for fitting additive trces to proximity data is described. This 
algorithm, termed the "generalized triples" or GTmethod, proceeds by examining all triples of 
objectsx,y,u in relation to the remaining set of objects to be clustered. For a given focal object, 
say x, the algorithm determines whethery or r r  isx's nearest neighbor using estimates derived 
from the distances of these objects to each other and the saved sums of distances of these 
objects to the remaining objects in the set. The result is a basic computational loop that is 
approximately order(n3). This idea is applied in a sequential agglomerative algorithm, with all 
pairs of objects that are mutual nearest neighbors (based on the above estimates) being joined 
at each stage. A simple version of the algorithm can be proven to find the correct solution if 
the dissimilarities matrix D actually satisfies the additive tree metric. The algorithm also works 
well on errorful data (i.e. data that cannot be modeled perfectly by an additive tree). A 
simulation study demonstrates that the GT algorithm works as effectively as the Sattath and 
Tversky algorithm (Corter, 1982; Sattath & Tversky, 1977) in terms of fit of the obtained 
solutions, and is faster for moderate- to large-sized data sets, especially in the presence of 
error. A second simulation study shows that the GTalgorithm obtains comparable fits to 
De Soete's ( 1983) algorithm, with large savings in computation time. 

Additive trees have proved to be useful representations for proximity data 
in the behavioral sciences. This usefulness has been demonstrated by a wide 
variety of applications to such problems as mental representation of concepts 
(c.g., Abdi, Barthelemy, & Luong, 1984), consumer choices (DeSarbo, 
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inspirational to his students, friends, colleagues, and the larger research community. 

Computer programs written in the PASCAL language implementing the GT and STC 
algorithms described in this article are available over the World-Wide Web. PASCAL source 
code for the programs "GTREE" (algorithm GT) and "ADDTREE" (algorithm STC) and 
documentation are maintained on the NetLib resource at Lucent Technologies' Bell 
Laboratories. See http:linetlib.bell-labs.comlnetlibhdsiindex.html for information on 
obtaining tiles. Forthose without access to a PASCAL compiler. DOS-executable version of 
the programs may be available. See the author's home page at http:llwww.columbia.edul 
-jec34 for current information on availability. 
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Manrai, & Manrai, 1993), perceptions of societal risks (Johnson & Tversky, 
1984), organizational structure (e.g. Clinchy, 1990), mental organization of 
environments (Taylor & Tversky, 1992), and the historical relationships 
among languages and dialects (e.g. Corter, 1989). Additive trees, like their 
simpler counterpart, ultrametric trees, are typically applied to matrices of 
proximity data (i.e., similarities or dissimilarities), one familiar example being 
a correlation matrix. 

The usefulness of additive trees for analyzing proximity matrices may be 
illustrated by the following example applications. In one study by Johnson 
and Tversky ( 1984), subjects were given a similarity rating task using 18 
societal risks (for example, terrorism, automobile accidents, lung cancer) as 
stimuli. Subjects rated how similar they thought each pair of risks were. Thc 
additive tree solution (see Corter. 1996, p. 42) grouped the risks by overall 
similarity, revealing highly interpretable clusters of risks (for example, one 
cluster grouped all the illnesses, while another grouped the technological 
disasters nuclear accident and toxic chemical spill). The specific nature of 
these clusters may be used to infer what factors subjects take into account in 
comparing risks. As another example, Beller (1 990) used additive trees 
(among other techniques) to analyze the relationships among subtest scores 
and among single test items in a scholastic aptitude test used to screen 
applicants to Hebrew University. In one analysis of single test items, she 
selected a representative 42-item subset ofthe entire pool of 230 items, then 
analyzed thecorrelations among pairs of the selected items. The additive tree 
solution for these data indicated two major groups of items: one including the 
items measuring knowledge, and the other including items related to problem- 
solving skills. Within each of these large groupings were more specific 
clusters of  items (for example, a cluster comprised solely of the "numerical 
series7' items). The additive tree solution shows not only which items cluster 
together, but also the relative dissimilarity of each ofthese groups of items to 
each other. Note that the decision to analyze only a subset of the 230 test 
items may very well have been dictated by limitations of the additive tree and 
multidimensional scaling software used in the analyses. 

In general, two factors have inhibited wider use of additive trees in such 
research applications. First, additive tree algorithms have only recently 
become available on mass-distribution statistical packages, and therefore are 
less widely known than other techniques. Second, the algorithms that have 
been available to fit additive trees to data are relatively inefficient. For 
example, one algorithm widely uscd at present for fitting additive trees, the 
Sattath and Tversky (ST) algorithm (Sattath & Tversky. 1977; Corter, 
1982), is a combinatorial algorithm that works in approximately 
order(n4)log(n) time. This limits its usefulness with large data sets. Iterative 
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"mathematical programming" approachcs for fitting additive trees (e.g. 
Carroll & Pruzansky, 1975; De Soetc, 1983) are also quite costly 
computationally. For example, the most effective of several additive tree 
fitting algorithms described by Barthelemy and Guenoche (1991), the 
iterative "method of reduction", was more than an order of magnitude slower 
than the combinatorial algorithms they compared it with for their test cases. 

Thus it seems that faster algorithms, whether combinatorial or based on 
iterative numerical methods, might spur wider use of additive trees as 
methods for analyzing proximities, both by enabling the analysis of larger data 
sets than can be handled by current algorithms and by encouraging wider 
implementation in mass-market statistical packages. Because the additive 
tree is a much less restrictive model than the ultrametric trees fit by 
"hierarchical clustering" methods and thus can accommodate a larger class of 
data structures, this greater availability would seem generally desirable from 
a data-analytic point of view (see Corter, 1996, for examples of data 
structures for which an additive tree seems more appropriate than an 
ultrametric). The present paper describes a new combinatorial algorithm that 
is theoretically faster than the widely used Sattath & Tversky algorithm by a 
factor of approximately order(n), making it a promising approach for the 
analysis of large data sets. 

Some Properties of'Additive Trees 

In order for a matrix of distances to be representable by an additive tree, the 
distances must satisfy the so-called "additive tree inequality" or "four-point 
condition" (Buneman, 197 1 ; Patrinos & Hakimi, 1972; Dobson, 1974 ; see 
Abdi, 1990, for a literature review of formal descriptions of additive trees and 
their properties). Letting x, y, u, and v denote objects in the set being 
analyzed, and d(x,y) denote the dissimilarity or distance between objects x 
and y ,  this condition states that for every quadruple of objects in the tree 
d(x,y)+d(u,v) 5 MAX [ d(x, u)+d(y, v), d(x, v)+d(v, u)]. This is equivalent to 
requiring that for any four objects there is some relabeling of the points as 
x,y,u, v such that 

d(x,y)+d(u, v) 5 d(x, u)+db, v) = d(x, v)+d(y, u). 

If the left-hand inequality is strict, then x and y are neighbors in the tree and 
so are u and v (Figure 1 A, next page). If equality holds among all three sums, 
then the tree structure connecting these four objects is a singular tree (or 
"bush") with the leafarcs for the four objects emanating from a single internal 
node (Figure 1 B). 
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Figure 1 
A.  An unrooted add~t ive  tree on four objects. B. A singular tree 

The additive tree metric is a less restrictive condition than the ultrametric, 
which requires that for every triple of  objects x,y ,z ,  d ( x , ~ )  5 MAX [d (x , z ) ,  
d(y,z)] .  In turn, the additive inequality implies the triangle inequality: 
d(x,-v) + dCv.2) r d(x , z )  for all x,y,z. Thus the space of ultrametric distance 
matrices is nested within the space ofadditive tree matrices, which in turn is 
a subset of the set of matrices satisfying the axioms of a metric spacc, namely 
symmetry [d(x ,y )  = dCv,x)J, positivity [d(x,.v) > d(x ,x )  = 01, and thc triangle 
inequality (see Critchley, 1986; Furnas, 1988). 

Previo~is Algorithms,fbr Fitting Additive Trees to ErrorJill Datir 

Algorithms proposed for fitting additive trees to data have generally been of 
two typcs: (a) combinatorial algorithms and (b) iterative numerical methods 
based on "mathematical programming" approaches (Arabie & Hubert, 1992; 
DeSoete & Carroll, 1996), though recently a different approach has been taken 
by Hubert and Arabie (1 995). Their algorithm uses an iterative projection 
strategy to seek the solution that is closest to the data in a least-squares sense 
while satisfying a set of constraints implied by the tree model. 

Combinatorial tree-fitting methods search through subsets ofthe objects 
to be clustered, computing statistics based on interobject distances in order to 
infer the optimal topology of the tree to be constructed. These algorithms arc 
usually implemented as sequential agglomerative algorithms (Sneath & Sokal, 
1972) that combine one or more pairs of objects at each stage, until only two 
or three "objects" (actually clusters corresponding to subsets of objects) 
remain. Estimation of the lengths of arcs in the tree is done either in parallel 
with the combining of objects at each stage, or after the tree topology is 
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J. Corter 

completely determined. The numerical "mathematical programming" 
approaches generally recast the discrete combinatoric problem of finding the 
optimal tree topology into a related problem in a continuous parameter space. 
An initial solution is then iteratively adjusted towards one compatible with a 
discrete tree structure, guided by the use of a "penalty function". The penalty 
function usually incorporates two terms, one measuring departure from a tree 
structure and one measuring departure of the model distances from the data. 
The relative weight of the first component is gradually increased to insure that 
the final model distances are consistent with the tree inequality. This 
procedure is analogous to gradually imposing (0,l) discreteness constraints 
on the tree-structure parameters. 

Combinatorial algorithms for fitting additive trees to data that may not 
perfectly satisfy the additive inequality have been introduced by Cunningham 
(1 978), Sattath and Tversky (1 977), Fitch (198 l) ,  Corter (1982), Guenoche 
(1  987), Roux (1986), and Barthelemy and Luong (1986). Perhaps the most 
widely used of these is the Sattath and Tversky (1 977) algorithm, referred to 
henceforth as algorithm ST. The variant of the algorithm introduced by 
Corter (1982) (algorithm STC) results in slightly improved performance 
compared with the original Sattath and Tversky algorithm (improved fit in 
about 10% of cases, with only a slight increase in processing time), and is 
available in at least one mass-market statistical package. For these reasons, 
and because the present "generalized triples" algorithm is based on the 
modification to ST introduced by Corter (1 982), the ST and STC algorithms 
will be described below. 

The first mathematical programming approach to fitting additive trees to 
data was proposed by Carroll and Pruzansky (1 975). Their method was based 
on the idea that additive tree distances can be decomposed into the sum of an 
ultrametric distance matrix plus a matrix generated by single additive constants 
for each object. Graphically, this corresponds to decomposing the additive tree 
into an ultrametric tree plus a singular tree like that shown in Figure I b. Another 
mathematical programming approach to the problem was developed by De 
Soete (1 983). This method, referred to here as algorithm LSADT, works by 
iteratively adjusting the matrix of data dissimilarities, Dl so that the 
dissimilarities among each quadruple of objects eventually satisfy the additive 
tree inequality. The goal is to find that matrix which everywhere satisfies the 
inequality and is as close as possible (in a least-squares sense) to the original 
matrix of dissimilarities. One ofthe advantages ofthis LSADT method is that 
it is easily extended to such problems as fitting trees to incomplete data (De 
Soete, 1984). Disadvantages of the mathematical programming methods 
include relatively high computational cost, the possibility of convergence to a 
local minimum (admittedly also a problem with combinatorial methods), and 
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J.  Corter 

the fact that the output from the basic method is simply a matrix of distances 
satisfying the tree inequality, so that actual construction of the tree and 
estimation of arc lengths remains to be performed. 

The Sattath & Tversky (1977) Algorithm 

Like all the methods considered in this article, the ST algorithm 
introduced by Sattath & Tversky (1977) accepts as input a matrix D of 
proximities between eachpair of "objects", and outputs an additive tree graph 
displayed in rooted form. Leaves of the tree correspond to the objects being 
scaled, and internal nodes of the rooted tree may be thought of as representing 
"clusters" of objects (Corter, 1996; Sattath & Tversky, 1977). 

The initial step of the ST  algorithm converts the input proximities into 
distance-like numbers; that is, ensures that the data are dissimilarities 
satisfying the axioms of a metric space: symmetry, positivity, and the triangle 
inequality. If the data are similarities, they are converted to dissimilarities by 
subtracting them all from the maximal similarity value. In order to achieve 
symmetry if the data are asymmetric, corresponding entries in thc top and 
bottom halves of  the proximity matrix are averaged. An additive constant is 
then added to all entries in the matrix. That constant is selected to be the 
minimum value that results in the dissimilarities exactly satisfying the triangle 
inequality: that is, d(x,v) + dCv,z) 2 d(x,z) for all x. .v, z, with equality holding 
for at least one triple. 

The STalgorithm proceeds in a sequential agglomerative manner. At each 
stage, onc or more pairs of objects are selected to be combined into a cluster, 
as described below. For each pair selected (say, objects x andy) and combined 
into a common node, the lengths of the arcs under this common node arc 
calculated, and the distance of the combined object x,v to each other object z is 
calculated as the (weighted) average of d(x,z) and d(v,z). For each such pair 
combined at a given stage i, the proximity matrix is thus reduced in size from 
n, x n,  to ( n l  - 1 ) x (n l  - 1). Up to n1/2  objects pairs may be combined on stage 
i. These stages continue until nl is less than or equal to 3, at which point thc 
topology of the tree is completely determined. The final objects are combined 
and the remaining arcs estimated, then the tree is output. 

At a given stage, pairs of objects are selected to be combined as follows. 
Denote the matrix of "data distances" at stage i by D,. The algorithm looks 
through all quadruples ofobjects x, v,  u, v in D,, and computes three sums: 
S ,  = d(x,y) -t d(u,v), S, = d(x,u) + dcv, v), and S,  = d(x, 1.) + d(.il,zt). 
According to the tree inequality, if the true tree topology among these four 
objects is (x.v)(u v), then S, < S, = S,. If the true structure is (x u)(-v I.), then 
S ,  < S ,  = S,, and if it is (x v)(>)-u), then S ,  S ,  = S,. Thus with distances 
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J. Corter 

perfectly satisfying the tree inequality, we can conclude that the two objects 
pairs corresponding to the smallest sum are neighbors in the true tree 
structure. It can be proven that if we assign a "neighbor score" of 1 to the two 
pairs in the smallest sum [say, pairs (x,y) and (u,v)], and a score of 0 to the 
other four object pairs, and then sum these scores over all quadruples of 
objects, that the maximal entry in the resulting "neighbor score" matrix N 
corresponds to two objects that are "nearest neighbors" in the true tree 
structure. Thus the entries N(x,y) in the neighbor score matrix can be thought 
of as a measure of closeness of the corresponding pair in the tree topology. 
Using this 1-0-0 scoring rule and combining only a single pair of objects at 
cach stage results in an algorithm that can be proven to always find the true 
tree structure for errorless data, if one exists. 

Of course, with real data, error of various kinds will in general prevent the 
two larger sums from being exactly equal, and possibly even reverse the 
ordering of the smallest and the larger sums for one or more quadruples. 
Thus the ST algorithm uses a scoring rule designed to be more robust in the 
face of error: pairs of objects corresponding to the smallest sum are assigned 
a score of 2, those pairs corresponding to the next smallest sum are given a 
score of 1, and those for the largest sum are given a score of 0. This 2-1 -0 
scoring rule was advocated by Sattath and Tversky as improving 
performance of the algorithm with errorful data. 

If only a single pair of objects were combined on each stage, the algorithm 
would be slow, especially for larger data sets. The reason is that with n 
objects, there are Q quadruples of objects, where Q = n(n-l)(n-2)(n-3)/24. 
Combining only a single pair of objects at each stage results in (n-3) stages 
before the topology of the tree is determined. Thus this slow version of the 
algorithm (henceforth denoted algorithm ST,) requires processing time 
roughly proportional to n' [actually to n(n-1 )(n-2)(n-3)(n-3)], and quickly 
becomes impractical in most implementations as n grows. 

Accordingly, Sattath & Tversky ( 1  977) used the following rule to select 
up to n1/2 pairs of objects to be combined on stage i. For each object x, the 
other object y corresponding to the largest entry in that row and column of the 
neighbor score matrix N is defined asx's nearest neighbor. All object pairs for 
which this nearest neighbor relationship is reciprocal are termed "mutual 
nearest neighbors", and that pair is marked to be combined on this stage. 
Using this rule results in best-case processing time approximately 
proportional to (n4)log,(n), as discussed below. 

Corter (1 982) introduced a modification (algorithm STC) of the basic ST 
algorithm, motivated by the observation that sometimes the nearest neighbor 
relationship is not reciprocal. For example, x may bey's nearest neighbor, 
N(x,y) = MAX[N(y,*)], but u isx's nearest neighbor: N(x,u) = MAX[N(x,*)]. 
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J. Corter 

Or, the neighbor scores o fy  with x and u with x may be maximal but equal: 
N(x,y) = N(x,u). In these cases, it is not clear whether y or u should be 
combined with x at this stage (simply refusing to combine either p a ~ r  does not 
result in effective performance). 

The modification introduced in Corter's (1982) algorithm STC IS as 
follows. In the specific cases described above, the problem is to choose 
betweeny and u as the object to be combined withx. This can be accompl~shed 
in an optimal way simply by checking the sums of the tree inequality for the 
"generalized quadruple" x,y,u, V, where V is a composite object consisting of 
the set of all n,-  3 objects # x,y,u. That is, the following sums are computed: 
S ,  = d(x,y) + d(u, V), S, = d(x, u) + a'(?/, V), and S, = d(x, V) t d(v, u), where 4s, V) 
is defined as the average distance of all objects v in Vto x: 

1 
d(x, V )  = - 2 d(x, v). 

n, - 3 

Ify is nearer to x in the true tree structure than is u, then S, should be less than 
S,, which should be equal to S,. 

The use of this criterion for disambiguating ties and non-reciprocity in the 
N matrix scores results in improved performance for the STC algorithm over 
the original ST version. Specifically, in about 10% of randomly generated 
data sets with error, algorithm STC gave slightly improved fits with only a 
small increase in processing time (Corter, 1992, 1 996). The improvement in 
fit was generally on the order of 1 % in proportion of variance accounted for 
(PVAF), defined as the squared correlation of the model distances with the 
generated data dissimilarities. Algorithm STC, implemented as a PASCAL 
program called "ADDTREE/PW, has been disseminated widely (Corter, 
1996) and used successfully in a variety of applications. 

One drawback to the STCand STalgorithms is that the computation time 
they require increases rapidly with n. As already mentioned, the search 
through all quadruples of objects at each stage of the algorithm requires 
processing time proportional to n(n-l)(n-2)(rz-3)/24, thc numbcr of 
quadruples at a given stage. If the program is successful in finding nl2 or 
(n-  l)l2 pairs to be combined at each stage (the best case), this would result in 
performance approximately proportional to n(n- 1 )(n-2)(n-3)log,(n). Actually 
best-case performance would be somewhat better than this, because n 
decreases at each stage (by a factor of approximately 112 in this best case), 
thus the number of quadruples may be reduced at each stage by a factor of 
roughly 16 to 1. Worst case performance of the algorithm results when only 
a single pair of mutual nearest neighbor objects are found at each stage, 
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perhaps because of error in the data. In this worst case, performance will be 
proportional to n(n-l)(n-2)(n-3)(n-3), because n-3 stages will be required. 

In summary, because processing time requirements for the STC algorithm 
increase rapidly as n grows, it is not practical for very large data sets. The 
"generalized triples" or GT algorithm, described in the next section, offers 
similar performance in terms of fit, with a theoretical order(n) improvement in 
processing time that makes it more practical for large data sets. 

The Generalized Triples (GT) Algorithm 

Finding Tree Neighbors Using "Metric" Information 

It is natural to ask whether the least-squares criterion used in algorithm 
STC to decide on the true tree structure for certain individual quadruples of 
objects might be used as the basis for a new algorithm. That is, rather than 
using the 2-1-0 scoring rule of the ST and STC algorithms to compile a 
neighbor-count matrix N, and using the least-squares criterion of algorithm 
STC only to resolve ambiguities in the neighbor score relationships, it might 
be possible to use the metric information in the sums S, ,  S, and S, computed 
across all quadruples of objects to initially pick the correct neighbor for each 
object x. "Metric" information is used here to refer to the actual value of the 
differences among the sums S,,S2, and S,, as opposed to the merely ordinal 
relationships among them that determine the ST algorithm's 2-1 -0 scoring 
rule. Thus, the resulting algorithm is "metric" in the sense that it uses 
numerical information about the sums (implying that the proximities must be 
measured at the interval or ratio level), rather than merely their ordinal 
relationships. 

Consider the additive tree defined on four objects shown in Figure la .  
Each arc ofthe tree in Figure 1 a is marked with a greek letter denoting the arc- 
length parameter. For dissimilarities on four objects perfectly satisfying the 
additive tree inequality, these parameters can be estimated without error as 
follows, if the true tree topology is known to be as shown in Figure l a .  

6 = 1 /2(d(x,y) + 1 12 { [d(x, u) + d(x, v)] - [ d b ,  t l )  + dcv, v)] ) ) 

A 

= lM(d(x,y) + 112 { [ d b ,  U) + d(y, v)] - [d(x, u) + d(x, v)] ) ) 

A 

= 1 /2(d(u, v) + 112 { [d(x, v) + dcv, v)] - [d(x, u) + d b ,  u)] ) ) 
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2, = 112 ( [d (x ,u )  + d@.v)] - [d(x.y) + d(u ,v )]}  = l / 2 (S2  - S , )  

Note that two equivalent estimates of e,:, and - c,, are available for errorless 
data, because in an additive tree the sums d(x ,  u)+d(v, v) and d(x ,  v )  t d(j, ,  u )  
must be equal ( 2 ,  is used as a negative quantity for consistency with 
developments below) . For errorful data, a more efficient estlmate of the 
length of the central tree arc is avallablc: 

2' = 1 /2 ( 1 / 2 [d (x ,u )  + d(-v. v)  t d(x ,  v )  + d(v, u)] - [d(x.  1 3 )  * tl(tr. v ) ]  I 

I t  is evident that this estimate is simply the average of ;, and -2,. Note also 
that the remaining such quantity that can be computed among the three sums, 
$, = l /2 (S3  - S2) ,  is equal to 0 for errorless data. 

Now consider the problem of trying to identify the true trce topology 
using the six interobject distances. When the true tree structure is unknown, 
the tree topology of any quadruple of objects x,y,u, v corresponds to onc of 
the three cases shown in Figure 2. In Case 1 ,  y is x's tree neighbor, and u is 
neighbors with v .  In Case 2 ,  u  is x's neighbor, and .v is neighbors with v. 
Finally, in Case 3, neither? nor u is x's  neighbor, rather v  is. It is not difficult 
to see that the problem of determining the true tree topology is equivalent to 
the problem of estimating e  appropriately. Because the true tree structure is 
not known, we are not sure if Case 1.2, or 3 applies: thus we cannot be sure 
which of the following expressions provides an appropriate estimate of thc 
central arc length parameter E: 

For errorless data, perfect estimates of are provided by both i ' ,  and -2,  in 
Case 1 ;  by both 2, and -;, in Case 2; and by 2,  and -;, in Case 3.  Therefore 
for errorful data the most efficient estimators of the central arc length are 
given by: 
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J. Corter 

Case 1 Case 2 Case 3 
X X X 

Figure 2 
The three possible tree topologies for distinguished objects X..Y.L( ,  1) 

case  1:  ;', = l12(;, - z,)  
case  2: ;; = 1 12(;, - ;,) 

A 
Case 3:  E; = l12(t3 - t ,) .  

It is easy to verify that for errorless data these expressions both give the 
correct estimates for the central arc length and indicate the true tree structure: 

A 
if the true tree structure is (x y)(u v) (Case I ) ,  then en l  = E , will both be 
positive (and equal), while E", = 0. If the tree structure is (x u)(y v )  (Case 
2). then En2 = -EnI will be positive and equal, with ;, = 0, and if the true tree is 
(X v)(y,u) (Case 3), then ;, = -;, will be positive and equal. with ;, = 0. 

When n 1 4, the above results hold for every quadruple of objects 
x,y,u,v. In the general case, some of these quadruples will have structure 
corresponding to Case 1, some to Case 2, and some to Case 3 .  However, in 
order to generalize the above observations and at the same time lay the 
groundwork for the more efficient algorithm proposed here, let us recast the 
question somewhat and ask, for each triple of objects x,y,u: "Is y or u x's 
nearest neighbor in the tree?" In fact, the answer to this question depends on 
the placement of any fourth object v in the tree, as depicted schematically in 
Figure 3.  For a given focal object x, and candidate neighbors v and u, let us 
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Figure 3 
Schematic representation of an additive tree, showing the topologies of quadruples ~nduced for 
distinguished objects x,y.zr by differing placements of a fourth object 1,. 

denote the set of objects v inducing Case 1 as V ,  (with cardinality ) I , ) ,  thc set 
of objects inducing Case 2 as V, (with cardinality H , ) ,  and the set inducing 
Case 3 as V3 (with cardinality n ,  j. The tree of Figure 3 is described as merely 
schematic because the leaves corresponding to individual objects 111 set V 3  
might join the tree at different points along the arc consisting of the unlon of 
segments labelled u and E,. 

When y is indeed x's nearest neighbor in the true tree structure, ~t can be 
seen that Case 1 will obtain for all n ,  quadruples x,y,u,v. and Eh,,  - ci. and 
hence $*I will be positive for every quadruple. Furthermore, for any v that 1.; 
not x's nearest neighbor, at least one quadruple will induce Case 2 or Case 3, 

A A A A A 
and either e ,  = - E  and - e 3  = 0, or 2, = 0 and - t, = - E ,  for any such quadruple. 
These observations suggest a way of identifying the nearest ne~ghbor  of 
object x: for a l ly  # x, define: 

Then that objecty for which T(x,y) is maximal can be identified as  the nearest 
neighbor of x. 

Thus one strategy for finding the best tree structure for errorful data 
would be to compute the estimates t ; ,  ;;, 2; for all quadruples of objects, 
summing 2; across all quadruples involving x andy  to create a summed T 
score for the pair (x,y), then joining that pair of  objects that has the highest 
such summed score. But this strategy would not lead to an algorithm more 
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J. Corter 

efficient than algorithm STC, because it still requires looking through all 
quadruples of objects at each stage. 

However, a shortcut strategy is available for computing these summed 
estimates when n r 4 (Corter, 1992). This shortcut requires precomputation 
of the summed distances of each object x to all other objects: 

The goal is to compute T(x,y), summed across all u,v f  x,y. Thus, 

Taking each term T, and T, separately, we have 

= ' 2 P [(d(x,  u )  + d b ,  v )  - (d(x,y)  + d(u, v) ]  
I f ,  r. #;.I 

However, because 

it follows that 
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Similar steps give 

The T(x,?j) scores, computed as T(x,y)  = 1i2(T, - T,),  can be compiled into 
a matrix T, where a higher T(x ,y )  score indicates that .x and ,I, are relatively 
close in the tree structure. In fact, it can be shown that the maximal T(x, j , )  
score in the matrix indicates a pair of objects in the trec that are "trcc 
neighbors" (i.e., x is topologically closest toy in the tree graph, andy is closest 
to x), and should be joined at this stagc of the algorithm. 

Of course, combining only a single pair o f  objects pcr stagc results in 
relatively slow operation of the algorithm. The basic estimation step 
described above requires looking through all triples of objects x,j1.11, summing 
thc appropriately signed estimates ;;, ;:,and ;; into the entries T(x,?l), T(.r,~r). 
and T(y,u). Combining only a single pair of objects (corresponding to the 
maximal T score) per stage would require (11-3) stages, and therefore result in 
an algorithm with computation time proportioiial to (n) (n-  1 ) ( t i -2) (n-3) .  This 
slow variant of the present method may be referred to as algorithm GT (for 
"Generalized Triples -combining only 1 pair"). 

In general, however, more than one pair will be neighbors in thc trec 
structure at any given stage of the agglomerative algorithm. Thus we nced 
some way of identifying thesc additional neighbor pairs. A straightforward 
approach begins by defining a nearest neighbor relation using the scores in the 
T matrix. Y is defined asx's nearest neighbor if T(x ,y )  = MAX [T (x , z ) ]  for all 
= # x. Ifthis nearest neighbor relationship is reciprocal, thcnx and!) arc said 
to be mutual nearest neighbors ( M N N ) .  One approach to identifying 
additional pairs at each stage to be combincd would be to combine all pairs of 
objects that are MNN (this is the approach taken by Sattath & Tversky. 
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1977). However, this turns out not to work well, because occasionally pairs 
of objects are MNN merely as a result of error in the dissimilarities. A 
heuristic that works well in preventing the use of such "gratuitous" MNNpairs 
involves finding the maximal T score in the matrix that is dominated by 
another T score in that row or column. This quantity, T,,,,, is used as a cutoff: 
all pairs of objects x,y that are MNNare marked to be combined at this stage, 
as long as T(x,y) is greater than T,,,,. This principled heuristic works well, and 
allows more than one pair ofMNNobjects to be combined at each stage ofthe 
algorithm. The resulting algorithm, termed the "generalized triples" or GT 
algorithm, is outlined in Table 1 (next page). 

The GTalgorithm can be expected to work in best-case time proportional 
to n(n- 1 )(n-2)log,(n), because at each stage a search is made through all n(n- 
1 )(n-2)/6 triples of objects, and if nl2 or (n- 1 )I2 pairs of objects are combined 
at each stage then approximately log,(n) stages will be needed. In the worst 
case only a single pair of mutual nearest neighbors will be found and 
combined at each stage, resulting in (n-3) stages, and performance will be 
proportional to n(n- 1 )(n-2)(n-3). 

A program, named "GTREE", has been written in Turbo PASCAL to 
implement the generalized triples (GT) algorithm. The next section presents 
results of simulation studies comparing the performance of this program with 
that of some previous methods. 

Simulation Studies 

Two simulation studies were conducted to evaluate the effectiveness of 
the proposed generalized triples or GTalgorithm. The first study compared 
the performance of the GTalgorithm with the Sattatth-Tversky-Corter (STC) 
algorithm. The second compared the performance of GT with De Soete's 
(1983) mathematical programming approach to fitting additive trees 
(algorithm LSADT). 

For the first study, both the GT and the STC algorithms were 
implemented in PASCAL and compiled using Turbo PASCAL for DOS, 
version 6.0. For comparison, "slow" variants of the two algorithms ("ST," 
and "GT,") that only combine a single object pair at each stage were also 
programmed and evaluated. All analyses reported in the simulations were 
conducted on a Pentium-based personal computer running at 90 MegaHerz, 
with 16 Megabytes of RAM. 

Random binary trees were constructed, with arc lengths chosen randomly 
from a uniform distribution on (O,]), using n's of either 20, 40, 60, or 80 
objects. The use of random binary trees (generated separately for each 
proximity matrix) ensures that the results of the simulation can be generalized 
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Table 1 
Summary of Al_porithm GT 6 '  7 

GIVEN: A matrix D of distances or dissimilarities among n "objects" denoted 
x.!,, 11.. . : D = [ d (x , j> ) ] .  

Step 0. Adjust dissimilarities to satisfy the metric axioms: symmetry. 
positivity, and the triangle inequality (see text). 

STAGE i :  ITERATE STEPS 1-4 UNTIL N, 5 3: 

Step 1. For each object x, compute R(x) = d(x ,y ) ,  the sum (over y )  of 
dissimilarities of x to all objects y (x ) .  For every pair of objects ( x , y ) .  
initialize a "tree score" variable T(x ,y )  to 0. 

Step 2. For every triple of objects ( x , y .u ) ,  compute: 

Accumulate these estimates in the matrix of T scores: 

Step 3. For each x, define .y as x's nearest neighbor if 

T(x , y )  = MAX [T(x ,z ) ]  for all z # x. 

If the nearest neighbor relationship is reciprocal, that is, 

T(x ,y )  = MAX [T(x ,z ) ]  for all z # x = MAX [T(v,z)]  for all z  f j-, 

then define pair ( x , . ~ )  as mutual nearest neighbors (MNN).  

Define T, , ,  = (MAX [T(x , y ) ]  1 3v such that T(x , y )  < T(x,ll) or T(x, j , )  < 
T( v , y )  } . 

Step 4. For each of the k MNN pairs ( x , y )  for which T(x,y)  > T,,,,, combine the 
pair ( x , y )  into a cluster ( xy ) .  Redefine distances from each new 
"object" (xy) :  d [ (xy ) , z ]  = AVE[d(x,z) ,  dO;,z)] for all z f x,y,  where the 
average is weighted by the number of leaves in branches x and !I. 

Estimate lengths of the two arcs below each new node ( x y )  Reduce 
n for the next stage: n,., = n,-k. 
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to a variety of tree structures, though the results might differ for other 
populations of tree-generated data sets. Both errorless and errorful data were 
used. In the errorless case, no error was added to the constructed tree 
distances. In the low-error condition, random normal error with variance 
equal to 114 the variance of the errorless distances was added. In the high- 
error condition, this error had variance equal to 112 the variance of the 
errorless distances. One-hundred data sets were generated in each condition. 

Results of the simulation are shown in Table 2. The basic criteria for 
evaluation include the proportion of variance explained in the data by the 
model distances (RSQ), and the computation time in seconds (SEC) used by 
the program. Most noteworthy is the fact that all four algorithms perform 
indistinguishably well in terms of fit of the solution. In the case of errorless 
data, all four algorithms give mean RSQ values of 1.000. For the low error 
condition, RSQ declines from approximately .84 for the data sets with n=20 
to .81 for the n=8O data sets. For high error, the fits decline from about .74 
to about .68. Note that there is no evidence of suboptimal fits anywhere, 
because for the low-error conditions the true proportion of model variance in 
the data should be .80, while for the high-error conditions it should be .67. 
The finding that observed fits generally exceed these values shows that some 
overfitting is occurring, especially for the lower n conditions. 

Regarding the computation time required for solution, the first thing to 
note is that when n=20 the algorithms are not distinguishably different in 
speed. When n=40 or higher, it can be seen that for errorless data, algorithms 
GT and STC are roughly comparable in performance, with perhaps a slight 
advantage for STC with fewer objects and a slight advantage for GT with 
n=80. For errorful data, however, GT shows a consistent advantage 
(beginning with n=40) that increases with the amount ofadded error and with 
n .  Algorithms GT, and ST, are markedly inferior to the others, as expected, 
since they exemplify worst-case performance (because these algorithms 
combine only a single pair at each stage). The advantage of GT, over ST, 
increases with n, as expected. Note that amount of error does not affect the 
performance of GT, and ST,. This is not surprising, because the main effect 
of error on computation time is to reduce the number of mutual nearest- 
neighbor pairs found at each stage, thus increasing the number of stages 
required for algorithms STC and GT, but not affecting ST, and GT,. 

In order to check if the processing time advantage of GTover STC gibes 
with the theoretical predictions made above, further simulated data sets were 
produced and analyzed. Additional cells were created, corresponding to 
~ 1 0 ,  30,50,  or 70 objects and either no added error or error variance equal 
to 50% of the generated tree distances. Thus for the no-error and high-error 
conditions of Table 2 (next page), data sets of size n=10 to n=80 were 
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Table 2 
tion b u l t s  . -  for Four Algorithms. Show- R-squared of k ~ n d  . > .  

Solution ~ e a n ~ u t a t i o n  Time per S o h U m l m  Second& R e s u b  Based 
. . . 

on 100 Rum for IhdCd l  

n= 20 RSQ: 
SEC: 

n= 40 RSQ: 
SEC': 

n= 60 RSQ: 
SEC': 

n= 80 RSQ: 
SEC: 

n= 20 RSQ: 
SEC: 

n= 40 RSQ: 
SEC: 

n= 60 RSQ: 
SEC: 

n= 80 RSQ: 
SEC: 

ALGORITHM "STC" ALGORITHM "G7" 

ALGORITHM "ST," ALGORITHM "GT," 

available. A total of 100 data sets for each cell were generated, analyzed by 
either GTor STC, and the mean computation time (in seconds) was recorded. 
For each algorithm (GT or STC) and each error condition (no error or high 
error), the mean computation times (0 for different levels of n (=I0  to 80) 
were related to various polynomial functions of n, using a linear model 
with no intercept parameter (because computation time can be expected to 
be equal to 0 for n=O objects). Thus the models used were of the form: 
T = I3 Fin). The specific functions investigated were F,(n) = n(n-l)(n-2). 
F,, (n) = n(n- l )in-2)log(rr), F4(n) = n(n- 1 )(n-2)(n-3), FdL(n) = n(n- 1 )(n-2) 
(ti-3)log(n), and F,(n) = n(n-l)(n-2)(n-3)(n-3). Note that according to the 
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analyses presented in previous sections, best-case performance of the GT 
algorithm ought to be proportional to F,,(n), while worst-case performance 
ought to be proportional to F4(n). For the STC algorithm, best-case 
performance ought to be proportional to F4,(n) and worst case to F,(n). 

These five polynomial models were fit to the array ofcomputation times 
for n=10 to n=80, for the following four conditions: algorithm GT with no 
error, algorithm GTwith high error, algorithm STC with no error, algorithm 
STC with high error. Fits were obtained by ordinary least-squares, 
specifically by using a regression package to request a simple regression 
equation with no intercept term. For each condition, the best-fitting 
polynomial function was defined as that function resulting in the lowest SSE. 
Results were as follows. For algorithm GT, the best-fitting polynomial 
function was F,,(n) = n(n-l)(n-2)log(n), for both the errorless and the high- 
error data sets (SSE=.O 14 and =.04 1, respectively). This means that average- 
case performance (for this population of simulated data sets) approximates 
the predicted best-case performance, even with noisy data. For algorithm 
STC, the best-fitting function for errorless data was F,(n) = n(n-l)(n-2)(n-3), 
with SSE=.287). This is somewhat faster than the expected best-case 
performance proportional to F4,(n), which had a slightly larger error 
(SSE=.533). For errorful data, however, the best-fitting function was 
F,(n) = n(n-l)(n-2)(n-3)(n-3), in line with worst-case theoretical predictions. 
Note that error was relatively large for this model at SSE=1.70, indicating that 
none of the functions described STC high-error performance very well. To 
summarize, the approximately order(n) advantage in computation time 
expected for algorithm GT is confirmed for crrorful data, but the advantage 
seems to be somewhat less than expected for errorless data. It may be that 
with errorless data, algorithm STC's method of choosing mutual nearest- 
neighbor pairs is relatively more effective (meaning that it combines closer to 
ni2 pairs at each stage). When close to n12 pairs are combined at the first 
stage, the number of quadruples to be checked at the second stage is reduced 
to approximately 111 6 of the number of quadruples at the first stage. Thus for 
errorless data it may be that the computational requirements of the first stage, 
with number of quadruples proportional to n(n-l)(n-2)(n-3), dominate the 
requirements of subsequent stages. 

A graphical summary of these results is shown in Figure 4 (next page), 
which plots the mean computation time for data sets of size n=10 to 80 
versus the best-fitting polynomial function for the GT algorithm, namely 
F,,(n) = n(n-l)(n-2)log(n). Each separate line plots the results for a given 
algorithm and level of error. The main observation is that the lines for 
algorithm GTare remarkably linear with F,,(n), both for errorless and high- 
error data. In contrast, the lines for algorithm STC are positively accelerated 
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J. Corter 

Computation Time vs. FIN) = N(N - 1)(N - 2)log(N) 

Figure 4 
Simulation study I : plot of computation time (in seconds) for data sets of size II= I0 to II=XO. 
with the x-axis plotted in coordinates proportional to n(n-l)(rr-2)log(rr). The solid lines show 
the performance of the GTalgorithm with errorless and high-error data sets; dotted lines show 
the performance of the STC algorithm. 

functions of this polynomial, meaning that computation time for this 
algorithm rises faster than this function ofn.  It can be seen from the plot that 
with errorless data algorithm STC is actually slightly faster than GTfor data 
sets smaller than about n=65, at which point GTbecomes more efficient. For 
high-error data, however, algorithm CT is consistently faster than STC, and 
this advantage increases rapidly with n. 

A second simulation study was conducted to compare performance of the GT 
algorithm with that of the LSADT program, that implements the mathematical 
programming algorithm described by De Soete (1983). This simulation study 
also varied the level of error added to the generated data and the number of 
objects. The level oferror used was again either 0, 1/4, or 1/2 ofthe variance of 
the errorless data. The number of objects in each generated data set was either 
12,24, or 36, corresponding to the levels used in the simulations reported by De 
Soete (1983) and Pruzansky, Tversky, & Carroll (1982). Fifty data sets were 
generated and fit for each combination of study parameters. 
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Results of this simulation study are reported in Table 3. De Soete's 
FORTRAN-based LSADT program offers several options for the starting 
configuration used by the iterative algorithm. In Table 3, the runs labeled 
"LSADT(data)" used the unperturbed data as the initial configuration, while 
those labeled "LSADT(rand)" used uniform random numbers as the starting 
configuration. The results reported are the mean R-squared of the final 
model (tree) distances with the data, and the approximate computation time 
in seconds for each single run. The table shows that differences in fit between 
the three algorithms are minimal. In the errorless case the mean R-squared is 
equal to 1.000 for all three algorithms in all conditions (i.e. fit is perfect). For 
data with added error, the mean R-squared values are very closk, and 
apparently within the range of sampling error. More specifically, 
LSADT(data) shows higher fits than GT in three out of six error conditions, 
while LSADT(rand) outperforms GTin four out of six cells. The advantage 
for LSADT(rand) in the six error cells averages 0.2%, however, so this may 
be a real though small effect. 

However, in terms of computation time the algorithms differ markedly, 
especially for the higher n's. The GTalgorithm's advantage in speed ranges 
from roughly one order of magnitude (when n=l2) to roughly two orders of 
magnitude (when n=36). For example, with data on n=36 objects and high 
error, GT takes approximately one second, while both versions of LSADT 
require more than 2.5 minutes. Note that the GT algorithm's advantage in 
speed grows as n increases, so with larger data sets the GTalgorithm may be 
the only practical approach. 

Table 3 
s for A-ms GT a n d  of o f T  (De Soete, 

1983): -red of Ff 
Der S o h  (in Seccmk). 

n=12 RSQ: 1.000 .862 .784 1.000 ,865 .781 
SEC: 0.0 0.0 0.0 0.2 0.7 1.0 

n=24 RSQ: 1.000 .834 .724 1.000 .834 .727 
SEC: 0.2 0.3 0.3 3.6 18.3 21.5 

n=36 RSQ: 1.000 .822 ,705 1.000 .821 .710 
SEC: 0.9 1.1 1 . 1  26.3 115.1 155.9 
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J. Corter 

A new combinatorial algorithm for fitting additive trees has been 
described, the "generalized triples" or GT algorithm. The method involves 
computations performed on all triples of objects in the set to be modeled. 
rather than requiring search through all quadruples of objects as do previous 
combinatorial algorithms such as the Sattath & Tvcrsky ( 1977) STalgorithm, 
and the modified version introduced by Corter ( 1  982) (algorithm STC'). Thc 
computation time required by the GTalgorithm is approximately ( r l  ' ) log(n) 
for both errorless and errorful data, making it substantially faster than 
previous algorithms for moderate- to large-sized data sets. Silnulation studies 
also indicated that the GTalgorithm performs effectively in terms of fit ofthe 
obtained solution. Thus the algorithm may prove useful for the fitting of 
additive trees to proximity data, especially with large data sets, 
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