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The category utility hypothesis holds that categories are useful because they can be used to predict
the features of instances and that the categories that tend to survive and become preferred in a
culture (basic-level categories) are those that best improve the category users' ability to perform this
function. Starting from this hypothesis, a quantitative measure of the utility of a category is de-
rived. Application to the special case of substitutive attributes is described. The measure is used
successfully to predict the basic level in applications to data from hierarchies of natural categories
and from hierarchies of artificial categories used in category-learning experiments. The relation-
ship of the measure to previously proposed indicators of the basic level is discussed, as is its relation
to certain concepts from information theory.

Categorization is one of the most basic cognitive functions.
Why is the ability to categorize events or objects important to
an organism? An obvious answer to this question is that catego-
ries are important because they often have functional signifi-
cance for the organism. Another familiar answer is that group-
ing objects into categories allows for efficient storage of infor-
mation about these groups of objects. One purpose of this
article is to explore connections between these two answers
regarding the utility of categories.

The idea that categories serve certain functions for the organ-
ism raises the possibility that some categories fulfill these func-
tions better than others. The clearest evidence that certain natu-
ral categories are "better" than others stems from the work on
"basic-level" categories (Mervis & Rosch, 1981; Rosch, Mervis,
Gray, Johnson, & Boyes-Braem, 1976). A basic-level category is
one that is preferred by people over its superordinate and subor-
dinate categories. For example, when shown a picture of a par-
ticular object, most people will identify it as a chair rather than
as furniture or a kitchen chair. From this and other evidence,
chair is considered to be a basic-level category for most people.

A variety of empirical phenomena demonstrates the superi-
ority of basic-level categories (Mervis & Rosch, 1981). As sug-
gested above, when people are shown an object, they tend to
name it at the basic level (Rosch et al, 1976). In recognition
tasks, people recognize basic-level objects faster than either sub-
ordinates or superordinates (Jolicoeur, Gluck, & Kosslyn, 1984;
Rosch et al., 1976). Basic-level names generally have arisen ear-
lier in the development of languages (Berlin, Breedlove, & Ra-
ven, 1973), and basic categories are used earlier in the naming
and other behavior of young children (Anglin, 1977; Brown,
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1958; Horton & Markman, 1980; Mervis & Crisafi, 1982). Fur-
thermore, these basic-level names tend to be shorter and more
frequent words in English than names of superordinate or sub-
ordinate categories.

All these types of evidence tend to pick out the same level of
category (e.g. chair) as optimal in hierarchies of natural catego-
ries. Thus it is difficult to establish whether the causes of basic-
level effects are linguistic (e.g., word length and frequency), de-
velopmental (basic-level terms are learned earlier by children),
or "structural" (because of the particular features associated
with a category). However, a number of experimental studies
have used hierarchies of "artificial" categories to demonstrate
that structural factors are sufficient to induce basic-level-type
effects (Gluck, Corter, & Bower, 1992; Hoffmann & Ziessler,
1983; Mervis & Crisafi, 1982; Murphy & Smith, 1982). In a
typical result from these studies, categories were defined at
three levels of generality, with the feature-category associations
defined in such a way that the middle level was expected to be
"basic." These predictions were confirmed by showing that the
middle-level categories were learned most quickly or could be
named most quickly after they were learned.

These experimental results demonstrate that feature struc-
ture (i.e., feature-category association) is sufficient to induce
the sort of category-learning phenomena that are associated
with basic levels. The results do not mean that developmental
and linguistic factors, such as age of acquisition and word fre-
quency, do not influence how easily people can use category
names. But we believe that these developmental and linguistic
factors arise as effects of the optimality of certain categories,
rather than as causes. This view follows from a theory of why
basic-level categories arise, which we describe in this article.
The theory is structural, in that it explains the utility of catego-
ries in terms of the features associated with the categories or
category names. Furthermore, the theory suggests a potential
quantitative measure of the "goodness" of a category. The
theory is normative, in that it assumes that the best categories
are those that serve the twin purposes of maximizing feature
predictability and optimizing information transfer in commu-
nication between people (Gluck & Corter, 1985).
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Previously Proposed Structural Measures
of Category Goodness

Rosch and co-workers (Rosch et al., 1976) introduced the idea
that basic levels might arise as a consequence of natural pat-
terns of co-occurrence of features in the world. They termed
their approach a structuralist one, in that they did not propose
specific process models for the learning of categories, but
rather sought to describe the relations between stimuli and
their features that underlie such learning.

Rosch et al. (1976) suggested several structural measures as
candidates for picking out basic-level categories. One of these
suggestions was that basic-level categories may be those for
which the average cue validity is maximal. Cue validity is de-
nned as the conditional probability of an object being in a
category c, given that it possesses some feature / P(c\f). For
example, the validity of the cue wings for the category birdis the
probability that an object is a bird, given that it has wings.
However, as Murphy (1982) pointed out, cue validity will al-
ways be maximal for the most general or inclusive level of a
hierarchy. The probability that an object with wings is an ani-
mal is logically at least as great as the probability that it is a
member of a subset of animals (e.g., a bird). However, because
the basic level is rarely if ever the most inclusive level, cue
validity cannot be a valid indicator of the basic level.

An alternate hypothesis is that basic-level categories are
those for which category validity is maximal, where category
validity is defined as the conditional probability of an object
having some feature /given that it is in some category c, P(f\c).
Categories with high category validity would be those catego-
ries for which inferences about features can be made with con-
fidence. But, as Medin (1983) noted, category validity suffers
from the opposite problem as does cue validity: It generally
selects the most specific categories because they tend to have
the least variability in features. For example, the probability
that something can fly given that it is a robin is higher than the
probability that something can fly given that it is a bird. Thus,
category validity is also an unsatisfactory predictor of the basic
level.

Cue validity and category validity both reflect desirable pat-
terns of association between categories and their features: Cue
validity reflects the extent to which a feature can be used to
uniquely identify a category, whereas category validity reflects
the extent to which category membership can be used to make
inferences about the presence of a feature. Thus basic-level cate-
gories may be ideal categories because they represent a trade-
off between these two factors. Furthermore, some function
combining these two measures might be maximal for the inter-
mediate-level categories that are often found to be basic (Me-
din, 1983). Jones (1983) suggested that basic-level categories
might be those for which the product of cue validity and cate-
gory validity, P(f\c)P(c\f), is maximal. He termed this the fea-
ture collocation measure.

Jones (1983) suggested applying the collocation measure in
the following way to predict which level of a hierarchy should
be basic. Consider a single feature /denoting the presence of an
attribute or quality (e.g, can fly). For each category in a nested
set (i.e., a hierarchy) such as robin-bird-animal, the product
P(f\c)P(c\f) is computed. Feature /is assigned to the category

for which this measure is maximal. For example, if the product
P(can fly\c)P(d\can fly) is greater for bird than for robin and
animal, this feature will be assigned to the category bird. Across
all features, a summary score for each category is defined as the
number of features assigned to that category. In all subsequent
discussion, we refer to this summary score as the feature-pos-
session score. In the robin-bird-animal hierarchy, bird would be
identified as the basic level if its feature-possession score ex-
ceeded that of robin and animal.

Jones's (1983) measure seems empirically promising in that
(unlike cue validity and category validity) it can be maximal for
intermediate-level categories. Furthermore, a normative justi-
fication can be constructed for the measure on the basis of the
usefulness of attempting to simultaneously maximize cue valid-
ity and category validity. However, this normative argument
does not necessarily lead to the multiplicative combination rule
for combining the two criteria. That is, why should it be the
product of cue and category validity that is maximized rather
than some other function? Furthermore, the intermediate step
of calculating feature-possession scores seems questionable.
Why should a feature be assigned to only a single category for
which the collocation is maximal? This implies that a feature
contributes evidence for the "basicness" of only a single cate-
gory. These details of the measure and its suggested method of
application seem in need of better normative or empirical justi-
fication.

Other measures have also been proposed that might distin-
guish basic-level categories. Another such proposal is that ba-
sic-level categories might be those that maximize within-cate-
gory similarity and minimize between-category similarity (Me-
din, 1983; Mervis & Rosch, 1981). Because within-category
similarity will in general be maximal for the most specific cate-
gories, and between-categories similarity minimal for the most
general categories (cf. Medin, 1983; Tversky, 1977), the two
measures are at odds with each other (as for cue and category
validity), and actually some joint function combining the two
measures is presumably maximal for basic-level categories. Al-
though this suggestion seems promising, it has not been ex-
plored in detail. Empirical evidence that seems to support such
a view was provided by Mervis and Crisafi (1982) and by
Murphy and Brownell (1985), who showed that category differ-
entiation (presumably related to some joint function of within-
and between-categories similarity) predicted speed of identifi-
cation of line drawings in terms of the categories. Finally, one of
the several structural characteristics proposed by Rosch and
Mervis (Mervis & Rosch, 1981; Rosch et al., 1976) to be asso-
ciated with basic categories was that basic-level categories are
those that carry the most information about attributes. Al-
though this suggestion was not fleshed out by Rosch and her
co-workers, it foreshadows the ideas developed in the present
article.

To summarize, either Jones's (1983) collocation measure or
some measure combining within- and between-categories simi-
larity seems potentially capable of identifying basic-level catego-
ries. However, to judge the relative merits of these and related
suggestions, either empirical data or normative considerations
ought to be brought to bear. In this article, we describe a nor-
mative justification for the existence of basic levels, on the basis
of an account of the usefulness of categories to the categorizer.
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We then show that the theory leads to a quantitative measure of
category utility that, besides having an explicit normative justi-
fication, successfully predicts the basic level in several applica-
tions with data from natural and artificial concept hierarchies.
We also discuss the relationship of the measure to the notion of
informativeness and to Jones's collocation measure.

Utility of Categories: Feature Predictability

We propose that a category is useful to the extent that it can
be expected to improve our ability to (a) accurately predict the
values of features for members of that category and (b) effi-
ciently communicate information to others about the features
of instances of that category. We show that under plausible as-
sumptions about how a person makes predictions or guesses
about the values of features, a category that is optimal for one of
these purposes also tends to be optimal for the other. We then
discuss the implications of this view for explaining basic-level
phenomena and identifying basic-level categories.

Our basic assumption is that there is functional value for a
person to have accurate information about the features of
things. For example, an organism searching for food needs to
know whether a particular plant part is poisonous, nutritive,
sweet, tough, and so on. Some features of instances may be
useful only indirectly—for example, to generate tests to con-
firm tentative identifications. However, because a person will
experience a variety of need states and goals across time, gener-
ally, there is value for the person to have accurate information
about all or virtually all the features of instances.

We term this the category utility hypothesis: A category is
useful to the extent that it can be expected to improve the abil-
ity of a person to accurately predict the features of instances of
that category. We formalize this idea as follows. Let category c
be defined as a finite set of instances, c= (0i,02, . . . ,on}. We
assume that an instance o, can be described by a finite set of
discrete features, F = ( f 1 , f 2 , . . . ,/m). Consider a hypothetical
situation in which the only information a person R has about
instance o, is the fact that it is a member of category c. What
value does the knowledge that o, is a member of c impart? We
propose that one measure of this value is the increase in R's
ability to correctly guess the features of o, that results when R is
given the information that ot is a member of c.

With no knowledge about whether o, is a member of c, R's
best guess about the probability of ot possessing feature fk

would be based on P(fk), the base-rate probability of fk. How
well can R be expected to do in guessing whether instance o,
possesses feature fk in this situation? To derive R's expected
score, we need to make an assumption regarding the type of
guessing strategy R adopts. Evidence from the literature on
probability learning suggests that there are strong general ten-
dencies for people (a) to correctly induce the relative frequencies
of events, given a large enough sample of trials (instances) and
(b) to adopt a probability-matching strategy for guessing out-
comes in such tasks (Estes, 1972). Assuming that R has
correctly induced P(fk) from past experience and that R adopts
a probability-matching strategy, R should guess that instance ot

possesses feature fk with probability P( fk) when given no infor-
mation about the category membership of o,. Because such a
guess issued randomly will be correct with probability P(fk)

(the base-rate relative frequency of fk), the overall probability of
R's correctly guessing that o, possesses feature fk is given by
P(fk)P(fk) = P(fk)2- This follows because in the absence of any
information about o{, R's guess is independent of the actual
occurrence or nonoccurrence of / thus the probabilities of o,
actually possessing feature /and ofR guessing that it does can
be multiplied to obtain the probability of the joint event.

Now suppose that R has some criterial test that informs him
whenever an instance is a member of c. This test could be a
message from another person, or it could be some feature-based
identification procedure. Again assume that R adopts a proba-
bility-matching strategy and that R has correctly induced
P(fk\c) from past experience. Then whenever R is informed that
Of is an instance of c, R should guess that o, has feature fk with
probability P(fk\c). Because such a guess will be correct in this
conditional distribution with probability P(fk\c), R's expected
probability of "success" is P(fk\c)2 (following the same logic as
for the no-information case). Thus the identification of o, as a
member of c will change R's probability of correctly guessing
that ot possesses feature fk (i.e., R's expected score on a single
trial) from P(fk)

2 to P(fk\cf. Finally, note that the message that
ot is a member of c will occur with probability P(c) (assuming
perfectly reliable identification of c), but with probability 1 —
P(c), no such message occurs. We can thus show that the ex-
pected increase in R's ability to predict whether o, possesses
feature fk, given reliable information as to when an instance is a
member of c, is given by

P(c)[P(fk\tf - FUifl + (1 - P(c))(P(fk)
2 - P(fk)

2]

= P(c)(P(fk\c)2 - P(fk)
2].

Summing this measure across all m features possessed by in-
stances of c, we have

CU(c, F) = P(c) 2 lP(fk\c)2 - P(fk)
2]. (1)

We term this measure the category utility of c. Note that al-
though it is assumed that R has correctly induced both P(fk)
and P(fk\c), it is not necessary to assume that R can give an
accurate assessment of P(c). If R's test for the presence of c is
perfectly reliable, or (put another way) if whenever an instance
is a member of c, R is always so informed, then this term of the
model can be interpreted as the real-world relative frequency of
category c. In the present article, we assume that this is the case,
thus in the following discussion we refer to P(c) as the relative
frequency of c. However, ifR were not always informed that ot is
an instance of c, then P(c) should be interpreted as the probabil-
ity with which R is informed that c is present, rather than as the
actual base-rate probability of c.

As an example, consider the population of newspapers and
the subcategory of newspapers referred to as tabloids (category
t). All tabloids are printed in black ink (feature f{), and 90% of
them feature pictures on the cover (f2). Thus P(fi\t) = 1.0 and
P(f2\t) = -9. For the population of newspapers as a whole,
P(£) = 1.0 and P(f2) = .6. If 33% of all newspapers are tabloids,
P(t) = .33), then the category utility of the category t (using only
these two features) is equal to P(t) [(P(fi\if - P(ftf) + (P(f2\t)

2 -
P(f2)

2)} = (33) [(1.0 - 1.0) + (.81 - .36)] = (.33) [.0 + .45] = .15.
The interpretation is that being able to identify a newspaper as a
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tabloid leads to an expected increase in the ability to predict
one of its features, namely the feature of having a picture on the
front cover. Note that the feature of being printed in black ink,
although it has a high category validity, Pif^t) = 1, does not
contribute to the category utility score, because this feature can
be predicted just as well for any newspaper.

Application to Substitutive Features

So far we have been assuming that instances can be de-
scribed by the presence or absence of certain features or proper-
ties (e.g., a face either does or does not have a mustache). Tversky
(1977) termed such features additive, and pointed out that, in
contrast, many objects are better described by sets of mutually
exclusive and exhaustive properties, which he termed substitu-
tive features. For example, the attribute eye color might have
several possible values, say brown, blue, or green. Thus the
features brown eyes, blue eyes, green eyes are said to be substi-
tutive. Garner (1978) made a similar distinction between fea-
tures (denoting presence or absence of a property) and dimen-
sions (which have mutually exclusive levels). We prefer to use the
term attribute instead of dimension, which has connotations of
continuous variation. Hence we will refer to the attribute of eye
color, for example, with attribute values of brown, green, blue.

The category utility measure applies quite naturally to this
situation. Assume that instances are described by a value on
each of m attributes, where the /th attribute Fj has «; mutually
exclusive values, ffl , fj2, • . - ,fin. Then the probabilities of the
HJ values of attribute F, must sum to 1, because they are mutu-
ally exclusive and exhaustive. However, the category measure
still applies, providing a measure of R"s expected increase in
ability to predict the value of an instance on attribute Fjt given
information on whether the instance is a member of c.

CU(c, Fj = P(c) 2 [P(fjk | c)2 - P(fjk)
2}. (2)

Note that in this situation, /?'s feature-prediction score will be
lowest when all of the values of attribute F are equally likely
and highest when one value of F has probability 1 . In fact,
prediction will be perfect in the latter case. This is shown in
Figure 1 a, which presents a plot of /?'s expected score in predict-
ing the two values of an attribute Fj = (ft, f2] as a function of
P(fi). Category c will be valuable to the extent that many attri-
butes show large variability in the population (i.e., the no-infor-
mation condition) and little or no variability within the cate-
gory. The measure given in Equation 2 can be summed across
the set of m attributes to obtain an overall measure of the ex-
pected increase in ability to predict the values of all the attri-
butes of an instance.

Relation of Feature Predictability to Informativeness

As mentioned previously, one of the proposed characteristics
of basic-level categories is that they are the most informative in
terms of features (e.g. Mervis & Rosch, 1981). In this section, we
show that there is a close relationship between the predictabil-
ity of features as measured by category utility and the informa-
tiveness of a category in terms of its features, as measured by

standard concepts of information theory (Shannon & Weaver,
1949).

Assume that the information available to R (for receiver) con-
cerning the membership or nonmembership of ot in category c
is a message from another person 7" (for transmitter). From the
perspective of information theory, it is natural also to consider
as a message the fact that the feature fk is present. The informa-
tion that would be conveyed by transmission of this message is
defined to be — \ogP(fk). Furthermore, this message has proba-
bility P(fk) of occurring, therefore the expected information
associated with this message is given by -P(fk)logP(fk). Simi-
larly, when o, is known to be a member of c, the information
associated with message fk is given by — logP(fk\c), and its ex-
pected information is -P(fk\c)logP(fk\c).

When instances are described in terms of substitutive attri-
butes, the HJ mutually exclusive values of attribute Fj constitute
a message set, F, = {/), , fj2, . . . , fjn}. The expected informa-
tion carried by a such a set of messages is termed the uncer-
tainty of the set,

Uncertainty is maximal when all messages in the set are equi-
probable and minimal when one message has probability 1 and
the other messages have probability 0. Thus the uncertainty of a
message set (i.e., a set of attribute values) is inversely related to
the expected score that would be obtained in trying to predict
the attribute values using a feature-matching strategy. This can
be seen clearly in Figure 1, which contains a graph of the nega-
tive uncertainty of a message set Fj = (ft, f2} as a function of
P(fi) (Figure 1 b) along with the expected score function (Figure
la). The two curves are virtually identical, with each function
attaining a minimum value when both features have equal prob-
abilities, P(fi) = P(fi) = .5, and maximum values when one
feature has probability 1 and the other messages have probabil-
ity 0.

With these information-theoretic concepts, we can define
the informativeness of category c as the expected reduction in
uncertainty about the values of attribute Fjs given access to
reliable messages concerning the membership of instances in
category c. This expected reduction is equal to

= P(c)[- 2 Ptfjk) log Ptfjk) + P t f j k \ c ) log P(fjk I c)]

= J\c) log P(fjk \c) - P(fjk) log P(fjk)]. (3)

This expression is obviously closely related to the category util-
ity measure denned for a substitutive attribute (2). The mea-
sures differ only in the substitution of a log probability in Equa-
tion 3 for the actual probability in each of the terms of Equation
2. Because these log probabilities are monotonic with the ac-
tual probabilities, the resulting measures give virtually identi-
cal results in assessing the relative goodness of categories. This
demonstrates that the category utility measure provides one
possible quantitative instantiation of the informal notion that
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Figure!. (A) Plot of expected score, P(ft)
2+P(fif, as a function of P(fl). (B) Plot of negative uncertainty,
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basic-level categories are the most informative in terms of fea-
tures (Mervis & Rosch, 1981; Rosch et al, 1976).

Relation to Previously Proposed Structural Measures

The category utility model, expressed most simply in Equa-
tion 1, represents the goodness of a category in terms of three
basic factors: the probability or relative frequency of the cate-
gory c, the category validity of c for feature / P(f\c), and the
overall base rate of feature / />(/). The category utility of c is
defined as the difference between squared category validity
and the squared base rate, weighted by the relative frequency of
category c. Thus the model can be seen as a generalization of a
simple category validity model. For example, the fact that most
members of Alpha Omega fraternity like rock music does not
contribute to make members of Alpha Omega a useful subcate-
gory of the population of college students, because most college
students like rock music. And if there are only one or two
members of Alpha Omega, it again will not be a particularly
useful category.

The category utility measure can also be related to Jones's
(1983) collocation measure, P(/|c)P(c|/). The major difference
between the measures is in the role ascribed by the category
utility model to P(f), the base-rate probability or relative fre-
quency of feature / If we neglect the P(/)2 term of Equation 1,
we reduce the category utility measure to P(c)P(f\tf. By substi-
tuting P(fC\c)/P(c) for one of the P(f\c) terms in this expres-
sion, we obtain P(c)P(f\c) [P(f<~]c)/P(c)}, which reduces to
P(f\c)P(fr\c). Substituting P(c\f)P(f) for P(JTic), we have
P(f\c)P(c\f)P(f). Thus the first term of the category utility
measure can be seen as a weighted function of the collocation
measure, in which the collocation measure for each feature (or
attribute value) is weighted by the relative frequency of that
feature.1 The second term of the category utility measure also
involves a presumed influence of the base-rate probability of
feature /

In applications to identifying the basic level in an actual cate-
gory hierarchy, the two measures may give quite different pre-
dictions as to category optimality. These differences may result
not only from the role of the base rates of features but also from
the intermediate steps involved in applying the measure in the
manner suggested by Jones (1983). In these steps, a feature is
assigned only to that category in a hierarchical set such as
robin-bird-animal for which the collocation measure is maxi-
mal. For each category, a feature-possession score is computed
as the number of features assigned to that category (rather than
to superordinate or subordinate categories). It is these feature-
possession scores, rather than averaged values of the colloca-
tion measure itself, that are used to identify the basic level. In
the next section, we report applications of the category utility
measure to identify the basic level in several category hierar-
chies used in previous studies of basic levels and present com-
parative data on the performance of the collocation measure.
We apply the collocation measure both with and without the
intermediate step of calculating the feature-possession scores,
to assess what effect this has on the performance of the mea-
sure.

To summarize, the category utility hypothesis and the cate-
gory utility measure derived from it suggest several character-
izations of the type of category that will be most useful in a
given context. The value or utility of a category c is assumed to
depend on three factors: the relative frequency of the category,
the relative frequency of each feature within the category, and
the base rate of each feature in the context population.

Applications to Predicting Basic Levels

In this section, we examine the adequacy of the category
utility measure to predict the basic level in hierarchies of natu-

1 This relation between the two measures was pointed out by Doug
Fisher (1987).
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ral categories and in the artificial stimulus hierarchies used in
several experimental studies of basic-level learning. We calcu-
lated the mean value of the category utility measure for catego-
ries at each level of the hierarchy to see if basic-level categories
have a higher category utility than either subordinate or super-
ordinate categories.

Natural Taxonomic Categories

Rosch et al. (1976) had subjects list the features of nine hierar-
chical sets of natural categories, including both biological cate-
gories (e.g., trees) and nonbiological ones (e.g., vehicles). These
feature lists were then amended by judges to check for consis-
tency and eliminate obvious errors. Although Rosch et al. did
not report their actual data, Tversky and Hemenway (1984) pre-
sented the actual judge-amended feature lists for three of the
hierarchies: fruit, furniture, and musical instruments.

Each of these hierarchies consists of 10 categories: 1 superor-
dinate category (e.g. fruit), 3 basic-level categories (apple, peach,
grapes), and 6 subordinate categories, 2 for each basic-level cate-
gory (delicious apple, macintosh apple; freestone peach, cling
peach; concord grapes, green seedless grapes). For the musical
instruments hierarchy, the basic-level categories used were gui-
tar, piano, and drum; for furniture, basic categories were table,
lamp, and chair. The data consist of a list of features for each
category. For example, fruit is associated with the features
seeds, sweet, you eat it, and apple is associated with stem, core,
skin, juicy, round, grows on trees, and so forth.

For analysis, the feature list for each hierarchy was repre-
sented as an 6 X m matrix with binary entries, where m is the
total number of features and 6 is the number of subordinate-
level categories included in each hierarchy. Each entry xik was
coded as a 1 if categoryi possessed the klh feature and as a 0
otherwise. Features were assumed to be "inherited"; that is, any
features of a category were assumed also to be features of the
categories below it in the hierarchy. For example, you eat it was
listed by subjects as a feature of the superordinate category
fruit; therefore, it was assumed also to be a feature of the catego-
ries apple, grapes, Macintosh apple, and so on, and each of these
categories received a score of 1 for this feature. The feature
structure for the fruit hierarchy is given in Table 1. For each
category, category utility was computed using the relative fre-
quency within the superordinate category as the base rate of
that feature. The values of the measure for each category were
averaged across categories within each level. For comparison,
Jones's (1983) collocation measure was also computed for each
category. This was done both with and without the additional

step of calculating feature-possession scores (as described in the
previous section). Results of these analyses are reported in Ta-
ble 2. The row labeled Collocation contains the mean value of
the statistic P(fj\c)P(c\fj) summed across features; the row la-
beled Feature possession contains the mean values of the fea-
ture-possession scores (i.e., the mean number of features for
which that level had the highest value of the collocation mea-
sure).

Values reported are the mean values of the measures for cate-
gories at each level (superordinate, basic, subordinate). For the
category utility measure, the value for the superordinate cate-
gory is 0.000 in every case because the superordinate category
serves as the context population for this analysis. Thus the in-
crease in predictability that is due to identifying an object as an
instance of the superordinate category is equal to 0. More inter-
esting are the values of the measures for the intermediate-level
categories, which are the basic-level categories. In each hierar-
chy, the mean values of category utility are highest for this level.
Furthermore, when comparisons of each basic-level category
are made with its superordinate and with its subordinate catego-
ries, in all nine cases (three in each hierarchy), the ordering of
the levels corresponds to that of the mean values in Table 2.
This provides support for the category utility hypothesis. Collo-
cation, on the other hand, fails to identify the basic level. In all
three hierarchies, the mean values of the collocation measure
incorrectly pick out the superordinate level as best. When the
data are examined separately for each of the nine basic catego-
ries, the superordinate categories are incorrectly identified as
best in seven out of the nine cases. The exceptions are the basic
categories guitar and chair, which are picked out as superior
both to their superordinates and to their subordinates. The
feature-possession scores defined using the collocation values
incorrectly pick out the superordinate level as best in every
case.

Given the theoretical plausibility of the collocation measure,
this empirical inadequacy is surprising. Comparing the calcu-
lation of this measure for the superordinate category and the
first basic category yields some insight into the nature of the
superordinate advantage. The collocation measure is calculated
as the sum across all features of P(f\c)P(c\f). For the superor-
dinate category, the term P(c\f) is equal to 1 for all 25 features in
Table 1, thus the measure reduces to simply the sum of the
P(f\c) terms: 1 +1 +1+ .33 + .33 + .33 + .83 + .33 + .67 +. 17 +
.17 + .17 + .17 + .33 + .33 + .33 + .33 + .33 + .17 + .33 + .33 +
.33 +. 17 +. 17 +. 17 = 9.83. For the first basic category, (consist-
ing of the first two rows of Table 1), the P(c\f) terms vary; many

Table 1
Feature Structure for the Fruit Hierarchy

Category Features

Delicious apple 1
Macintosh apple 1
Freestone peach 1
Cling peach 1
Concord grapes 1
Green seedless grapes 1

1 1
1 1
1 0
1 0
1 0
1 0

1
1
0
0
0
0

1
1
0
0
0
0

1
1
0
1
1
1

1
1
0
0
0
0

1
1
1
1
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

0
0
1
1
0
0

0
0
1
1
0
0

0
0
1
1
0
0

0
0
1
1
0
0

0
0
1
1
0
0

0
0
0
1
0
0

0
0
0
0
1
1

0
0
0
0
1
1

0
0
0
0
1
\

0
0
0
0
1
0

0
0
0
0
0
\

0
0
0
0
0
\
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Table 2
Mean Values of Category Utility, Collocation, and Feature-
Possession Score Measures for Hierarchies of Natural Categories

Measure

Musical instrument
Category utility
Collocation
Feature possession

Fruit
Category utility
Collocation
Feature possession

Furniture
Category utility
Collocation
Feature possession

Subordinate

0.71
3.10
0.33

0.69
4.17
1.33

0.84
4.00
0.75

Level

Basic

1.37
6.67
5.00

1.13
6.97
5.33

1.54
7.28
6.67

Superordinate

0
8.67

15.67

0
9.83

18.33

0
8.17

16.58

of them are considerably less than 1. For example, P(c\f) = 0 for
the last 12 features in the table, which are features associated
with other basic or subordinate categories. Thus it is not sur-
prising that the mean value of the collocation measure should
be greatest for the superordinate category.

Using the superordinate category itself as the context popula-
tion may provide an unfair advantage for the category utility
measure in these comparative evaluations, because no increase
in feature predictability can result from identifying something
as an instance of the superordinate category. However, there is
no accompanying data describing related superordinate catego-
ries or relevant base rates for features. One possibility for simu-
lating a plausible context for the given superordinate categories
is to define a new hypothetical contrasting superordinate cate-
gory in each case. This was done by simply replicating each
given superordinate category to create a contrasting superor-
dinate category. That is, from a given superordinate category
described by 6 subordinate-level categories and k features, a
new superhierarchy was created with 12 categories and 2k fea-
tures. For the new contrast superordinate category, the original
k features all have values of 0. Conversely, for the original super-
ordinate category, the features from (k +1) to 2k have all Os. The
extended hierarchies were analyzed as above, and the mean
values of the three measures were calculated for each level.

The values for the collocation measure and the feature-pos-
session scores for the original six categories were not affected by
the expansion of the hierarchy. Thus, both measures still incor-
rectly identified the superordinate category as best in each of
the three hierarchies. However, the values of category utility
were affected by this change of context. For the furniture hierar-
chy, the basic results did not change; that is, all three basic-level
categories had higher category utility than both their superor-
dinate category and their subordinate categories. For the fruits
hierarchy, however, the expansion of the context changed the
relative ordering of the levels. Each basic-level category here
had category utility higher than its subordinates but lower than
its superordinate. For the musical instruments hierarchy, the
results were mixed: Two basic categories (guitar and piano)
were indicated as optimal, but the third (drum) was indicated as

inferior to its superordinate (but still better than its subordi-
nates).

Thus both versions of the collocation measure perform
poorly with these data, incorrectly picking out the superordin-
ate level as basic in nearly every case. Results for the category
utility measure seem more promising, because it picks out the
correct basic category in nine out of nine cases in the analyses
using a restricted (single superordinate) context and in five out
of nine cases with the expanded contexts. Note, too, that these
expanded contexts probably exaggerate the distinctiveness of
the superordinate categories, because they assume no feature
overlap between the superordinate category and its new con-
trast category. For example, in the expanded fruit hierarchy, the
superordinate level has three features that are perfectly predic-
tive of the category, making the superordinate categories quite
distinctive. It may be more realistic to assume that at least some
of these features (e.g, sweet or you eat it) are shared with salient
contrast categories. Redefining the expanded contexts to re-
flect this fact would reduce the distinctiveness, hence the util-
ity, of the superordinates, possibly to a greater degree than for
the basic or subordinate categories. To check this hypothesis,
further analyses were conducted in which the expanded context
was altered so that the first two features were assumed to be
shared between the contrasting superordinate categories. For
this modified context, the category utility measure picked out
two out of three basic categories (apple and peach) as optimal in
the fruit hierarchy. The collocation measure still picked the
superordinate category as better than each of the basic catego-
ries. These exploratory analyses demonstrate the sensitivity of
the category utility measure to changes in the context popula-
tion of categories and features and also show the consistency of
the collocation measure's tendency to select the superordinate
level as best.

Studies Using Artificial Category Hierarchies

We have argued that basic-level categories are those that have
evolved to take maximum advantage of the distribution of fea-
tures in the environment, so that information about attribute
values can be efficiently summarized and transmitted. People's
individual cognitive mechanisms and learning strategies also
may have evolved in such a way as to take maximal advantage of
such structure (cf. Anderson, 1988). If this is so, then category
utility might also serve as a predictor of individual performance
in category-learning experiments. To test this, we applied the
utility measure to data from two experiments that found basic-
level learning effects using artificial stimuli.

The Murphy and Smith (1982) Experiment

The first set of data analyzed was from Experiment 1 of
Murphy and Smith (1982). Subjects in this experiment were
taught names for categories at all three levels of a hierarchy of
artificial categories. In a later testing phase, subjects were
shown a picture of a stimulus item along with a category name
and were asked to verify whether the stimulus was a member of
the named category. The stimulus materials (described below)
were designed so that the middle level of the hierarchy was
expected to be basic. The verification reaction times confirmed
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this prediction, with categories being verified fastest at the
middle level and slowest at the superordinate level.

The stimuli consisted of 16 line drawings identified to the
subjects as examples of fictitious tools. Figure 2 contains four
examples of these stimuli, one selected from each of the four
basic-level categories. The hierarchy consisted of two superor-
dinate categories, identified only by function (used for pound-
ing vs. used for cutting). Each of these superordinate categories
was itself divided into two intermediate- (basic-) level catego-
ries. Each of the four intermediate categories was subdivided
into two subordinate-level categories by varying one of the at-
tributes of the intermediate-level category (e.g., the type of han-
dle). Finally, there were two exemplars of each of the subordi-
nate categories, a large drawing and a small one.

Because the stimuli were described as tools, they can be de-
composed into parts in a straightforward manner. Each tool
can be described (and is differentiated from other tools) by the
shapes of its handle, shaft, and head. This suggests a natural
representation of the perceptual aspects of the stimuli in terms
of four multivalued attributes: three representing the shapes of
the handle, shaft, and head and one additional size attribute
with two values (large and small). The actual coding used is
given in Table 3. Note that the names given in Table 3, for
example, pounder and hammer, are used only for convenient
description of the stimuli. They were not available to subjects.

For each category at each level, we computed the value of
category utility and both versions of the collocation measure.
One difficulty with comparing the utility measures to Jones's
(1983) collocation measure is that the latter measure is defined

in terms of binary features, denoting presence or absence of a
property, rather than in terms of multivalued attributes. There-
fore, to apply this measure to the current stimuli, we receded
the four multivalued attributes as 1 8 binary features, each corre-
sponding to a single value of one of the attributes. The results of
the analyses are given in Table 4, along with the mean verifica-
tion reaction times from Murphy and Smith (1982).

The category utility measure correctly identifies the interme-
diate (basic) level as best. However, the collocation measure
and the feature-possession scores incorrectly identify the super-
ordinate level as best. It is interesting to examine why the collo-
cation measure incorrectly rates the superordinate level as supe-
rior to the basic level. Let HN1 denote the first values of the
handle attribute, and let SHI, HD1, and SZ1 denote the first
values of the shaft, head, and size attributes, respectively (Table
2). Then the collocation value for the first basic-level category
bl is calculated as the value of P(f\bl)P(b\\f) summed over
feature values HN1 , SHI , HD1 , HD2, SZ1 , and SZ2. This sum is
equal to (1)0) + (DO) + (-5)(D + (-5)0) + (.5)(.25) + (.5)(.25) =
3.25. For the first superordinate category, spl, the product
P(/|spl)P(spl|/) is summed over the features HN1 , HN2, HN3,
SHI , SH2, HD1 , HD2, HD3, SZ1 , and SZ2. This sum is equal to

(.5)(1 ) + (.5)(.5) + (.5)(.5) = 3.50. For the first three attributes, the
relevant feature values are nested within the category, thus
the P(c\f) term is always 1, and the P(f\c) terms always sum
to 1 for a given attribute such as handle. For example,
/>(SHl|spl)/>(spl|SHl) + />(SH2|spl)/>(spl|SH2) = (.5)(1) +
(5)(1) = 1. The last attribute, size, breaks the tie and indicates

(hammer) (knife)

( b r ick) (pizza cutter)

Figure 2. Examples of stimuli from each of four basic-level categories of tools. From "Basic Level
Superiority in Picture Categorization" by G. L. Murphy and E. E. Smith, 1982, Journal of Verbal Learning
and Verbal Behavior, 21, p. 3. Copyright 1982 by Academic Press. Reprinted by permission.
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Table 3
Coding of the Murphy & Smith (1982) Stimuli in Terms of 4 Substitutive Attributes

Item

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Category

Superord Basic Subord

Pounder Hammer Hammer 1

Hammer 2

Brick Brick 1

Brick 2

Cutter Knife Knife 1

Knife 2

Pizza cutter Pizza 1

Pizza2

Attribute

Handle

1
1
1
1
2
2
3
3
4
4
4
4
5
5
5
5

Shaft

1
1
1
1
2
2
2
2
3
3
3
3
4
4
5
5

Head

1
1
2
2
3
3
3
3
4
4
5
5
6
6
6
6

Size

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

Superord = superordinate, subord = subordinate.

the superordinate category as superior. For this dimension, the
P(f\c) terms are equal to .5 for both bl and spl, but the P(c\f)
term is equal to .5 for Category spl and to .25 for Category bl.
One can thus induce from these findings and similar examples
that the collocation measure indicates that having multiple val-
ues on some attribute within a category is no different than
having a single value for all members of the category, as long as
all these feature values are nested within the category.

The Hoffmann and Ziessler (1983) Experiment

Hoffmann and Ziessler (1983) conducted an experiment simi-
lar to that of Murphy and Smith (1982). They divided subjects
into three groups, each of which learned a different category
hierarchy denned on eight schematic drawings. Each of the
category hierarchies had three levels, with two top-level, four
middle-level, and eight bottom-level categories. Schematic de-
scriptions of the three hierarchies, taken from Hoffmann and
Ziessler, are shown in Figure 3.

The three stimulus sets are identified as Begriffshierarchie I,
II, and III. For each set, the eight stimuli (corresponding to the
eight bottom-level categories) are shown along the bottom of

Table 4
Mean Values of Category Utility, Collocation, and Feature-
Possession Score Measures (With Mean "True" Verification
Reaction Times) for Categories Used by Murphy & Smith (1982)

Measure

Category utility
Collocation
Feature possession
Reaction time (in ms)

Subordinate

0.30
2.13
3.67
723

Level

Basic

0.47
3.25
5.67
678

Superordinate

0.31
3.50
8.67
879

the chart along with their exemplar names. The four middle-
level and two top-level categories in each set are represented
schematically by just those features that are common to all
members of these categories. For example, in Begriffshierar-
chie I, the stimuli in the first top-level category, ril, all share a
common jagged shape. The rils are further subdivided into two
middle-level categories, kas and jad, which share common inte-
rior symbols. Finally, these middle-level categories each have
two exemplars (bottom-level categories), which are differen-
tiated by their bottom edges. Thus the three hierarchies differ
in the degree to which exemplars of categories at different levels
share attributes. Our representation of these stimuli was based
on a straightforward coding of the drawings using three attri-
butes: shape, interior, and bottom edge, with two, four, and four
possible values, respectively.

Results of the analyses are shown in Table 5. For Hierarchy 1,
the value of category utility was tied for the top (basic) and
middle levels. Collocation and the feature-possession scores, on
the other hand, correctly identified the top level as best. For
Hierarchy 2, in which the middle level was basic, category util-
ity correctly identified the middle level as optimal, and the
collocation measure was tied for the top and middle levels. The
feature-possession scores incorrectly identified the top level as
basic. For Hierarchy 3, category utility correctly picked out the
bottom level as basic, but collocation and the feature-posses-
sion scores incorrectly identified the top level as best.

Summary of Applications

In applications to data from three hierarchies of natural cate-
gories, category utility showed promise as a valid indicator of
the basic level, correctly picking out nine out of nine basic
categories as superior to their superordinate and subordinate
categories. In additional analyses using a plausible expanded
context population of categories, category utility picked out the
basic category in a majority of cases. The collocation measure
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Begriffshierarchie I

tun

Begriffshierarchie II
r l t

tux zut nub pux

mic

r\
gam taf

r\r\
lun tuz zut

M i l l
nub duw

Begriffshierarchie III

ril

lun

mi

IVWVrt
n u b duw pux

Figure 3. Schematic descriptions of three stimulus hierarchies. From "Objectidentifikation in kunst-
lichen Begriffshierarchien" by J. Hoffmann and C. Ziessler, 1983, Zeitschrift fur Psychologic, 194, p. 140.
Copyright 1983 by Johann Ambrosius Barth. Reprinted by permission.

and the feature-possession scores proposed by Jones (1983) in-
correctly picked out the superordinate level as best in seven out
of nine and nine out of nine cases, respectively, regardless of
context. For several hierarchies of artificial stimuli from labora-
tory studies of basic-level learning, category utility correctly
identified the basic level in four out of four cases (although in
one hierarchy the measure was tied for two levels). Jones's collo-
cation measure did not perform as well, picking the correct
level in only two out of four cases (again, in one of these success-

ful cases the measure was tied for the basic and another level).
The feature-possession scores invariably selected the superor-
dinate level as basic, thus these scores identified the correct
level in only one out of the four artificial stimulus hierarchies.

We believe that these results provide evidence that the cate-
gory utility measure offers a useful metric for evaluating the
goodness of categories and for identifying the basic Jevel in
hierarchies of natural and artificial categories. The collocation
measure, although potentially adequate for this purpose on the-
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Table 5
Mean Values of Category Utility, Collocation, and Feature-
Possession Score Measures for the 3 Stimulus Hierarchies
Used by Hoffmann & Ziessler (1983)

Measure

Hierarchy 1
Category utility
Collocation
Feature possession

Hierarchy 2
Category utility
Collocation
Feature possession

Hierarchy 3
Category utility
Collocation
Feature possession

Bottom

0.25
1.25
2.00

0.25
1.25
1.67

0.25
1.25
2.50

Level

Middle

0.38
2.00
3.00

0.38
2.00
3.67

0.13
1.25
2.00

Top

0.38
2.50
5.00

0.13
2.00
4.67

0
1.50
5.50

Hierarchy 1 = top-level basic, Hierarchy 2 = middle-level basic, Hierar-
chy 3 = bottom-level basic.

oretical grounds, does not perform as well in identifying the
basic level. Jones's (1983) suggested method for applying the
collocation measure, involving comparing values of collocation
"vertically" in a hierarchy for each feature and computing fea-
ture-possession scores for each category, seems to result in even
poorer performance in identifying the basic level.

Discussion

One of Rosch et al.'s (1976) hypotheses about the structural
characteristics of basic levels was that the basic level is "the
most inclusive level at which the objects of a category possess
numbers of attributes in common" (p. 392). If this is taken to
mean that all or nearly all of the instances of a category should
possess a given feature, then Rosch et al. seem to be suggesting
that two factors influence the basicness of a category: the rela-
tive frequency (i.e., inclusiveness) of the category and some
function of the category validities of features (i.e., the probabil-
ity of a feature or attribute value given the category; cf. Medin,
1983; Tversky, 1977). The category utility measure is a quantita-
tive measure that directly instantiates this idea, in that it de-
fines the relative goodness of a category in terms of these two
factors, plus a third: the base-rate distribution of attribute val-
ues in the context population. Inclusion of this third factor
allows for effects of such factors as the distinctiveness of con-
trast categories and the nature of the context population of
instances.

Previous structural analyses of categories and their proper-
ties have assumed that objects can be analyzed in terms of addi-
tive binary features, which represent the presence or absence of
a property. Such additive features are independent in the sense
that a given instance may (at least in theory) have any combina-
tion of these features. In certain of the analyses presented in
this article, we have used an alternate representation scheme:
substitutive attributes comprised of several possible attribute
values. It is of course possible to represent such a substitutive

attribute by a set of binary features in which each feature corre-
sponds to a single value of the substitutive attribute. However,
this representation ignores the fact that values of a substitutive
attribute are mutually exclusive. Because an analysis that is
based on substitutive attributes takes account of the logical re-
lationships between the attribute values, we believe that this
type of representation is most appropriate in many applica-
tions. Another reason why analysis in terms of substitutive at-
tributes is useful is because such coding seems particularly ap-
propriate for data structures (is., frames) commonly used in
machine learning and other artificial intelligence work.

Applications in Machine Learning

Category utility provides a quantitative measure of the good-
ness of a category for summarizing and transmitting informa-
tion. Given the normative arguments for why it is desirable to
define categories that maximize this informational value, as
well as the empirical evidence offered above indicating that the
measure is highly correlated with human learning of artificial
categories, category utility seems particularly well suited to use
as a criterion for machine learning algorithms. In fact, Fisher
(1987) designed an incremental "conceptual clustering" pro-
gram, dubbed COBWEB, that incorporates a criterion measure
that is based on category utility, in response to early reports of
the category utility hypothesis (Corter & Gluck, 1985; Gluck &
Corter, 1985). Specifically, COBWEB seeks partitions of the
objects that maximize the mean category utility for the parti-
tion's constitutent categories. This system and its descendents
have been influential in the machine-learning research commu-
nity (e.g., Gennari, Langley, & Fisher, 1989).

Other Normative Accounts of Cognitive Processes

We have argued that the best categories are those that best
facilitate inferences about features and communication about
the features of objects. We have suggested that something analo-
gous to evolutionary pressures have operated to select these
maximally informative categories as the categories that will
tend to be used frequently and survive in a language. Categories
that are highly informative (as measured by category utility)
will tend to be most useful to people in their individual strug-
gle to adapt and will tend to be most useful to social groups in
their attempts to develop an efficient and informative language.
Basic-level categories are those categories for which this infor-
mativeness and facilitation of feature prediction is maximal,
compared with superordinate and subordinate categories.

This evolutionary argument resembles other normative argu-
ments concerning adaptive or evolutionary influences on the
concepts and categories used by humans. Freyd (1983) sug-
gested that one type of constraint on the concepts used by a
society of cognitive beings is that concepts must be shareable.
That is, concepts will tend to survive in a community of cogni-
tive beings to the extent that they can be easily described and
communicated among people without distortion or loss of in-
formation. In our analysis, we have emphasized the value of
communicating information rather than the linguistic and
other constraints that impede such communication. Neverthe-
less, we share Freyd's assumption that communication among
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people can select (and perhaps even shape) certain concepts to
be preserved and used by a society.

More recently, Anderson (1988,1990) has also taken a nor-
mative approach, analyzing several cognitive mechanisms from
the standpoint of what type of performance is optimal or "ratio-
nal." His analysis also begins by assuming that the main benefit
of categories is to aid in prediction of feature values, although
his specific formulation differs from that of Gluck and Corter
(1985) in terms of what prior information the categorizer is
assumed to have available.

Finally, we wish to point out that although we refer to our
analysis as a normative account of the use of categories, at cer-
tain points we have assumed nonoptimal strategies on the part
of the categorizer, for example in assuming that the categorizer
follows a probability-matching strategy in guessing feature val-
ues. We have done this only where overwhelming experimental
evidence exists to show that such deviations from "optimal"
performance are in fact the rule. Thus the category utility mea-
sure is meant to provide a realistic measure of the value of a
category to humans. On the other hand, it has been argued
(Fisher, 1987) that in certain contexts, use of a probability-
matching strategy (which generates a representative sample of
predicted feature values) might actually be optimal.

Potential Extensions and Limitations

We believe that the category utility hypothesis, and its in-
stantiation in the category utility measure, might fruitfully be
applied to analyze phenomena other than the existence of basic
levels. Certainly the measure seems to offer a general metric for
the utility of categories, whether or not the categories in ques-
tion form a hierarchy or nested set.

However, some caution should be used in attempting to apply
the measure to explain the process of category learning. We
have suggested that the set of categories that are most used and
tend to survive in any natural language will be those that sum-
marize relatively large amounts of information (as measured by
category utility; Corter & Gluck, 1985). The idea that individ-
ual learning mechanisms might have adapted so as to tend to
learn such "best" categories is a separate hypothesis, which
should be examined as such. Still, a variety of factors operate in
determining how people learn categories in real-life situations,
and people seem to have great flexibility in the use of strategies
to assist their learning. Thus the view that category utility (or
any other measure) could serve to predict the order or ease of
learning of categories in all situations seems naive.

In particular, two factors that have been shown to play a role
in the actual learning of categories are not directly reflected in
the category utility measure. First, attributes of objects differ in
salience or prominence. The category utility measure as formu-
lated above does not provide for differential salience or impor-
tance of features, although it would be straightforward to ex-
tend the model by allowing differential weights on features.
Second, the model does not explicitly take account of correla-
tions among features, whereas data from category-learning ex-
periments (e.g. Medin, Altom, Edelson, & Freko, 1982) show
that people are sensitive to correlations among features. The
category utility hypothesis suggests that it is valuable to be able
to predict the value of a feature and that it is reasonable to add

the measure across features, regardless of any correlations
among features. However, models of unsupervised category
learning incorporating this or any other type of additive-cue
criterion (Medin & Schaffer, 1978) will still tend to find catego-
ries described by sets of correlated features in many applica-
tions (Anderson, 1990; Fisher & Langley, 1990).

We do not view these possible shortcomings as fatal, because
we do not advance the category utility hypothesis as a theory of
category learning. Rather we are taking what Rosch termed a
structuralist approach and attempting to delineate the cate-
gory-feature associations that underlie the motivations for
learning and use of categories.

Finally, note that general criticisms have been raised against
purely structural explanations of basic levels. For example,
Murphy and Medin (1985) have suggested that the coherence of
categories depends in part on whether people can construct
theories about why the category should exist or why certain
features should covary. But this objection does not address the
fact that people can learn feature-category associations even in
the absence of obvious causal connections, as in experiments
using artificial stimuli or in everyday superstitious behavior.
Thus, although structural explanations may not account for all
aspects of people's categorization performance, some account
must be made of people's ability to notice and take advantage of
feature-category associations. The contrast between a struc-
turalist approach and one that is based on causal coherence
parallels the distinction made in the machine-learning litera-
ture between techniques for similarity-based and explanation-
based generalization (e.g. Dietterich, 1986; Lebowitz, 1986;
Mitchell, Keller, & Kedar-Cabelli, 1986). A reviewer has
pointed out that one of the uses of theories may be to help
specify the space of relevant features. Once the space of features
is determined with the aid of domain theories, then similarity-
based learning and categorization processes may possibly be
used. Thus both types of inference processes may be needed to
adequately characterize human learning and reasoning.
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