Table 1
Girls and Science Review Theme 1- Equity and Access
\(\left.$$
\begin{array}{lllll}\hline \text { Author and year } & \text { Purpose of study } & \text { Participants and Setting } & \text { Methods/Methodology } & \text { Major Findings } \\
\hline \begin{array}{l}\text { Baker \& Leary } \\
\text { (1995) }\end{array} & \begin{array}{l}\text { To qualitatively examine the reasons } \\
\text { behind girls' choices of science }\end{array} & \begin{array}{l}\text { Volunteer sample of 40 girls, Grades } \\
2,5,8 \text { and } 11\end{array} & \begin{array}{l}\text { Semi-structured interviews } \\
\text { responding as girl and as boy }\end{array} & \begin{array}{l}\text { Girls were positive and confident } \\
\text { about science and felt strongly about } \\
\text { gender equity issues; they preferred }\end{array}
$$ \\
interactive, hands-on learning in \\
science, and their choices of science \\

careers were tied to people in their\end{array}\right]\)| lives and a desire to help |
| :--- |

$\left.\begin{array}{lllll}\begin{array}{l}\text { Greenfield } \\ \text { (1995b) }\end{array} & \begin{array}{l}\text { To examine sex differences in } \\ \text { attraction to science museum } \\ \text { exhibits }\end{array} & \begin{array}{l}\text { Upper elementary and middle school } \\ \text { children and adults visiting science } \\ \text { museums in Hawaii }\end{array} & \begin{array}{l}\text { Observations of people at exhibits }\end{array} & \begin{array}{l}\text { More boys than girls actively } \\ \text { participated in exhibits, and boys } \\ \text { monopolized computer exhibits, girls } \\ \text { chose more puzzle and life science }\end{array} \\ \text { exhibits and boys more computer and } \\ \text { physical science exhibits }\end{array}\right]$

Whiteley (1996)	To examine the gender fairness of Jamaican science textbooks over time	Jamaica	Analysis of 12 textbooks used in Jamaican high schools	Despite some improvement over time, most textbooks were still male-biased and supported gender stereotypes
Greenfield (1997)	To examine how students' science attitudes and participation varies by gender and grade	2,800 students in 1 elementary, 1 middle, and 1 high school in Hawaii, ethnically mixed population	Closed-response survey questionnaires, classroom observations using 2 protocols that categorize and quantify specific behaviors	Girls and boys had similar science attitudes, although boys had more physical science experiences and stronger views of science as a male domain, and attitudes became more negative with age, particularly for girls; girls got less attention from teachers than boys but engaged equally with science equipment
 Levins (1997)	To examine the role of peers in supporting female science students	100 Year 11 female students taking physics and biology in 5 high schools in Australia	Closed-response survey questionnaires, interviews with 6 students	The role of peer support was similar across science subjects but varied depending on the school context
McEwen, Knipe, \& Gallagher (1997)	To examine students' taking of Alevel science in 1995 as compared to 1985	1,600 students ages 14-19 in Northern Ireland in a range of single-sex, coeducational, Protestant, and Catholic schools	Closed-response survey questionnaires	Girls took more science A-levels in 1995 than 1985 and boys took fewer; boys took more science A-levels than girls overall in 1995, but girls performed better than boys
Huffman, Minger (1997)	To examine students' perceptions of science learning environments by sex and race	1,800 Grade 9 science students from 13 high schools across the US	Closed-response survey questionnaires	Girls perceived classes as more difficult and perceived themselves as more involved than boys in the same classes; on 4 other measures perceptions were similar
Bullock (1997)	To examine the effectiveness of the Gender and Ethnic Equity in Science Education (GEESE) program for preservice science teachers	5 female and 1 male preservice secondary science teachers enrolled in student teaching practicum at a southwestern US university	Case study drawing upon 2 individual interviews, tape-recorded group sessions, and teachers' reflective journals	Teachers' initial enthusiasm for GEESE program and equity issues waned when faced with obstacles related to resources and student performance; they felt program should happen earlier in their training
Tunnicliffe (1998)	To examine differences in girls' and boys' talk at animal exhibits	141 classes from 114 elementary schools in the UK	Tape recordings of 1,288 student conversations at a museum and zoo	Content of girls' and boys' conversations was similar, but girlsonly groups' comments were more emotional, while boys-only groups' comments were more factual

Adamson, Foster, Roark, \& Reed (1998)	To examine gender differences in young children's science fair projects	489 Grades 1-6 students in a mostly middle and upper-middle class progressive private school, 20\% minorities (mostly African American)	Evaluation and categorization of 268 science fair projects over 2 years, parent surveys about projects	Girls did more projects in biological and social sciences and boys in physical sciences for both years at all grade levels
Jovanovic \& Steinbach King (1998)	To examine whether girls and boys participated equally in hands-on science activities in performancebased classrooms	165 Grades 5-8 students in 6 US classrooms, 76\% Euro American, 5\% African American, 4\% Latino(a), 3\% Asian American, 12\% other	Classroom observations using checklist protocol over school year, closed-response survey questionnaires	Active-leading behaviors were equal for boys and girls and led to better science attitudes, but boys were more likely to manipulate equipment than girls; girls' perceptions of their ability decreased over the school year
Jacobs, Finken, Lindsley Griffin, \& Wright (1998)	To examine the impact of social, attitudinal, and educational factors on rural adolescent girls' career preferences	220 science-talented rural girls ages 15-18, 95\% European-American	Closed-response survey questionnaires mailed to girls and parents	Science interest, previous science experiences, peer support, and, to a lesser extent, mothers' attitudes influenced girls' science career plans
 Woodward (1998)	To examine differences in girls' and boys' science attitudes since inclusion of science in national primary school curriculum	360 primary school students from 12 schools in Wales	Closed-response survey questionnaires, individual interviews in 1991, 1993, and 1995	Girls and boys had positive science attitudes, but girls prefered biological topics and boys' preferences were broader; these patterns were unaffected by introduction of science in National Curriculum
Farenga \& Joyce (1999)	To examine gender differences in students' choice of science courses for themselves and members of the opposite gender	427 Grades 4-6 students from 28 classes in 2 mostly White, middle class US suburban schools	Closed-response course selection surveys where students chose for themselves and for opposite gender	Boys chose more science courses overall and more physical science courses than girls, and when choosing for the opposite gender, stereotypical patterns were even stronger, particularly when boys chose for girls
Åberg-Bengtsson (1999)	To examine gender differences in performance on the diagrams, tables, maps subtest of a national achievement test	34,099 students age 19 in Sweden	Analysis of achievement data on the Swedish Scholastic Aptitude Test using structural equation modeling	Gender differences favored males for quantitative questions involving diagrams, tables, and maps
Stark (1999)	To examine gender differences in students' preferences for science topics and activities	Students ages $8 / 9,11 / 12$, and 13/14 in Scotland, nationally representative sample	Closed-response survey questionnaires	Girls had stronger and more lasting preferences for biological topics than boys; girls and boys had similar preferences for activity types, and both had neutral or negative attitudes towards most activities

Andre, Whigham,
Hendrickson, \&
Chambers (1999)

Bailey,
Scantlebury, \&
Johnson (1999)

Preece, Skinner,
\& Riall (1999)

She (1999)

Johes, Howe, \& Rua (2000)

To examine students' and parents' attitudes and beliefs about science as compared to other subjects

To examine how collaboration with cooperating teachers impacts preservice science teachers' equitable practices

To examine gender differences in performance on a national science achievement test

To examine students' verbal communication and physical engagement in different gender composition groups

To examine gender differences in students' science attitudes, interests, and experiences

To compare sex differences in students' interests in science topics and learning activities in 1980 to those in 1997

To examine middle school girls' perceptions of themselves as learners, of science, and of the science classroom

437 Grades K-6 students and 347 parents from mostly European American schools in Iowa

59 student teachers from a US university

2,300 students ages 13-14 from 46 schools in England and Wales

36 target students in 3 Grade 7 classes in Taiwan

437 Grade 6 students from 5 schools in rural, urban, and suburban areas of the southeastern US, 42% EuroAmerican, 26\% African American, 9\% Hispanic, 15\% Asian-American, 8% other

203 Year 7 students in 8 primary schools in South Australia

Closed-response survey questionnaires

Comparative classroom observations using quantitative coding tool and qualitative notes over 3 years, interviews

Analysis of achievement data on national Key Stage 3 science tests

Observations, quantitative and qualitative analysis of video tapes of laboratory group work

Closed-response survey questionnaires

Comparison of closed-response survey questionnaires given to students in 1980 and 1997

215 Grade 7 girls from 4 schools in the southern US

Girls liked reading more but science as much as boys, and both genders, but more so boys, viewed science jobs as male-dominated; parents saw science as more important for boys, saw boys as more competent, and had higher expectations of boys in science

Student teachers regularly observed by cooperating teachers demonstrated more equitable interactions with students than those observed only by university supervisors

Gender differences favored males for higher-level and physics questions

In same-gender groups, girls read and recorded results slightly more and boys observed experiments slightly more; in mixed-gender groups these patterns varied by group

Girls were more interested in biology and boys in physical science topics and girls more often chose jobs that involve helping others; girls more often viewed science as difficult and boys more often as male domain, and boys had more out-of-school experience with science tools

Girls' and boys' overall interest level decreased, while boys' interest in physical science topics increased; both groups, but more so girls, showed increased preference for active, hands-on learning activities

Most girls viewed themselves as successful learners, preferred active learning, and had "naïve" views of the nature of science

Roger \& Duffield (2000)	To describe influences on girls' choices to opt out of science and technology and to analyze initiatives that attempt to address this situation	NA	Literature review and theoretical discussion	Six key factors underlie gendered school option choices, and 5 positions characterize initiatives aimed at encouraging girls and women in science, engineering, and technology
Bell (2001)	To examine gender differences in performance on memory retrieval questions on a national science achievement test	750 students age 16 in the UK	Analysis of question responses on General Certificate of Secondary Education (GCSE) examination	For memory retrieval questions, girls outperformed boys in biology, and boys outperformed girls in physics
Muller, Stage, \& Kinzie (2001)	To examine science achievement and growth rates in high school by racial-ethnic and gender subgroups	1,348 African American, 1,668 Latino, 799 Asian American, 1,891 White Grades 8,10 , and 12 students in the US	Analysis of survey data from NELS of 1988, 1990, and 1992 using hierarchical linear modeling (HLM)	Racial-ethnic gaps were larger than gender gaps within subgroups, and gender differences in predictors of achievement and growth rate varied by racial-ethnic subgroup
Stake \& Mares (2001)	To evaluate the impact of 2 science summer enrichment programs on students' science attitudes using multiple measures	330 gifted Grade 12 students from 76 high schools in the Midwest, 8.5\% African American, 13.0\% Asian American, 74.8\% European American, 3.6\% other ethnic groups	Multiple closed-response pre, post, and 6 month follow-up survey questionnaires, student and parent reports of program impact	Pre-post testing revealed no significant changes, but student and parent reports revealed girls benefited from program more than boys
Davis (2002)	To examine the challenges faced by women science educators in facilitating an after-school science club for urban girls	2 educators and 55 girls ages 6-12 in southwestern city, population served by youth club 65% Latino, 26% White, 5\% African American, and 77% at or below poverty level	Interviews with teachers and girls, formal participant observation of 22 weekly club meetings, collection of documents	Economic, structural, and ideological barriers hindered club's goal of giving girls access to legitimate science activity
Mattern \& Schau (2002)	To describe the relationship between the science attitudes and achievement of White middle school students and how it varies by gender	1,238 Grades 7 and 8 White students in 10 classrooms in 8 mostly rural schools in northern New Mexico	Closed-response survey questionnaires and 2 achievement instruments	For girls, attitude and achievement were not related, while for boys higher achievement led to more positive attitudes
Jayaratne, Trautmann (2003)	To evaluate the impact of a summer science enrichment program for high-achieving girls on science confidence, interest, participation, and aspirations over time	38 Grade 8 program participants and 173 applicants as comparison group, 37% of participants and 10% of comparison group minority, mostly African American	Closed-response survey questionnaires given to participants and comparison group before, 1 year after, and 4 years after program	Program participation overall did not influence outcomes measured, and at two later time points, nonminority participants had most and minority participants least positive outcomes
Reid (2003)	To examine differences in girls' and boys' attitudes and perceptions towards physics over time	2,866 students ages 10-18 in Scotland	Closed-response survey questionnaires	Girls' physics attitudes declined more than boys' at about age 13; girls' attitudes in particular increased again in later secondary years for those who continued to take physics

$\left.\begin{array}{lllll}\text { Elgar (2004) } & \begin{array}{l}\text { To examine gender representation in } \\ \text { a newly published series of } \\ \text { Bruneian textbooks }\end{array} & \text { Brunei } & \begin{array}{l}\text { Analysis of 3 recently published } \\ \text { science textbooks entitled Lower } \\ \text { Secondary Science for Brunei }\end{array} & \begin{array}{l}\text { Females were underrepresented in } \\ \text { images and text, and females most } \\ \text { often associated with motherhood } \\ \text { while males took on variety of roles }\end{array} \\ \begin{array}{lll}\text { Sencar \& } \\ \text { Eryilmaz (2004) }\end{array} & \begin{array}{l}\text { To examine what factors moderate } \\ \text { gender differences in students' } \\ \text { misconceptions about electric } \\ \text { circuits }\end{array} & 1,678 \text { Grade 9 Turkish students }\end{array} \quad \begin{array}{l}\text { Closed-response achievement tests } \\ \text { and survey questionnaires }\end{array} \quad \begin{array}{l}\text { There were no gender differences on } \\ \text { theoretical items, and differences on } \\ \text { practical items disappeared when age } \\ \text { and interest-experience related to } \\ \text { electricity were controlled for }\end{array}\right]$

Table 2
Girls and Science Review Theme 2- Curriculum and Pedagogy
$\left.\begin{array}{lllll}\hline \text { Author and year } & \text { Purpose of study } & \text { Participants and Setting } & \text { Methods/Methodology } & \text { Major Findings } \\ \hline \begin{array}{ll}\text { Weinburgh } \\ \text { (1995b) }\end{array} & \begin{array}{l}\text { To suggest how teacher education } \\ \text { efforts might respond to the } \\ \text { literature on gender issues in science }\end{array} & \text { NA } & \begin{array}{l}\text { Discussion and suggestions based on } \\ \text { the literature }\end{array} & \begin{array}{l}\text { Gender inclusive science teaching } \\ \text { should be modeled and prominently } \\ \text { addressed in teacher education }\end{array} \\ \text { programs }\end{array}\right]$
$\left.\begin{array}{ll}\begin{array}{l}\text { Alexopoulou \& } \\ \text { Driver (1997) }\end{array} & \begin{array}{l}\text { To examine gender differences in } \\ \text { how small groups of students } \\ \text { discuss physics ideas }\end{array} \\ \begin{array}{l}\text { Lagoke, Jegede, } \\ \text { \& Oyebanji } \\ \text { (1997) }\end{array} & \begin{array}{l}\text { To examine the impact on } \\ \text { achievement of using socio-cultural } \\ \text { analogies in science classes in a } \\ \text { non-Western environment }\end{array} \\ \text { Malone \& } & \begin{array}{l}\text { To examine gender differences in } \\ \text { the correlation between choice of } \\ \text { science and math subjects and } \\ \text { cognitive preference }\end{array} \\ \text { Burkam, Lee, \& } & \begin{array}{l}\text { To examine the impact of subject } \\ \text { matter, ability, and laboratory } \\ \text { activities on gender differences in } \\ \text { science achievement over time }\end{array} \\ \text { Hamerdon (1997) }\end{array} \begin{array}{l}\text { To examine qualitative differences } \\ \text { in students' interests in physics }\end{array}\right]$

86 students ages 14-15 from 4 schools in Athens, Greece

205 boys and 43 girls of mean age 16.8 years in 2 classes in 2 schools in Nigeria

375 Year 10 and 11 students in 1 school in a metropolitan area in Western Australia

12,120 Grade 10 students in US, nationally representative sample

Longitudinal sample of $\sim 1,100$ and cross-sectional sample of 5,361 students ages 12-16 in Germany

17 Grade 10 students (16 white, 1 African American, 14 girls), range of ability, working and middle-class community

23 female and 5 male mostly White prospective teachers in elementary science methods class at the University of Maryland

1,040 students attending 47
Tasmanian primary schools and then 16 secondary schools

Coding of social interaction and argument construction during single-sex group discussions of physics questions, pre-post testing

Experimental design including cognitive testing before and after 6 -week intervention

Closed-response survey
questionnaires from career counseling computer program, analysis of school counseling records

Analysis of survey data from NELS of 1988 and 1990

Closed-response survey
questionnaires of students at age 12
and 16 as well as cross-sectional sample in that age range

Teacher research using videotapes of classes, student drawings, student comments

Action research case study using semi-structured interviews, classroom observations, professor, co-researcher, and student journals

Longitudinal design using closed-
and open-response survey
questionnaires at Year 6 and Year 7

Girls sought consensus when
discussing ideas, and boys engaged in confrontations; both sexes scored
higher on post-tests after discussions
Girls and boys in intervention group achieved similarly and scored higher on post-tests than control students

Girls and boys who chose science and math had similar cognitive preferences, which differed from those of girls who were recommended but did not choose the subjects

Gender gap in physical science grew compared to Grade 8 data; laboratory experiences improved achievement, particularly for girls

Students fell into 3 distinct types of interest patterns that varied by gender, age, and confidence in physics ability

Girls talked about personal
knowledge of pregnancy and
childbirth, focused on pain and safety, and used everyday language more readily than scientific language

Most students resisted professor's attempts to implement genderinclusive pedagogy and were not concerned by having a male teacher

Girls' perceptions of learning environments were more positive than boys' in primary school and deteriorated more in high school; teacher/student relationships were especially important for girls

 Lissitz (1999)	To examine the impact of teaching practices recommended by the NSES on science achievement and equity	2,018 Grade 10 students in 163 US schools	Analysis of survey data from part of NELS of 1990 using hierarchical linear modeling	Recommended teaching practices were associated with higher overall achievement but increased gender and minority achievement gaps
Labuddde, Herzog, Neuenschwander, Violi, \& Gerber (2000)	To evaluate the impact of a genderbalanced physics curriculum on student attitudes and achievement	600 students in 31 Grades 11 and 12 classes of public schools in Switzerland	Quasi- experimental design comparing pre-post tests and questionnaires in 3 differing experimental groups and 1 control group; surveys and semi-structured interviews with teachers	Teachers found project valuable, but experimental groups did not improve in attitudes or achievement compared to controls; classrooms that used the most girl-friendly strategies correlated with more positive attitudes for girls and boys and higher achievement for boys only
Jones, BraderAraje et al. (2000)	To examine how students use tools and equipment during science lessons	16 targeted students from 2 Grade 5 and 3 Grade 2 classes in a public urban school in southeastern US with population 50% EuroAmerican, 47\% African American and other minorities, and 26% eligible for free lunch	Interpretive study using field notes from classroom observations of three lessons, interviews with students	Girls were more relational and cooperative than boys, followed directions more, and tinkered with materials less, while boys were more competitive and more exploratory with materials
Heard, Divall, \& Johnson (2000)	To examine whether a new audio tool at museum exhibits facilitates students' hands-on activity and conceptual learning	52 Years 5 and 6 students in a suburban school in Bristol, England	Videotapes of children at exhibits, closed- and open-response pre-post tests given to experimental and control group	Girls in particular engaged in more hands-on exploration of exhibits and significantly improved in test scores when using audio tool
Cavallo \& Laubach (2001)	To compare students' science attitudes and choices to take elective science classes in high versus low inquiry learning cycle classrooms	119 Grade 10 biology students with 6 teachers in a suburban US high school, 77% White, 7% African American, 7\% Hispanic, 1\% Asian American, 8% Native American	Closed- and open-response student survey questionnaires, teacher surveys, classroom observations	Students in high inquiry classrooms had more positive attitudes, and girls in high inquiry classrooms planned to take more elective science courses than girls in low inquiry classrooms
Parker \& Rennie (2002)	To compare the implementation of gender-inclusive strategies in singlesex vs. coed classrooms	409 students and 26 science teachers in 10 public coed high schools in Western Australia	Field notes and tapes of professional development, semi-structured observations, student, parent, and school personnel interviews, closedand open-response student survey questionnaires	Teachers, students, and researchers felt that gender-inclusive strategies were implemented more effectively in single-sex than in coed classrooms
Haussler \& Hoffman (2002)	To evaluate the impact of a yearlong curricular intervention on girls' interest, self-concept, and achievement in physics	456 students in 19 Grade 7 classes (12 experimental and 7 control) in 8 schools in Germany	Closed-response survey questionnaires and tests given at 4 time points to control group and three varying experimental groups	Curricular changes, teacher training, and small, single-sex classes combined, improved achievement, interest, and feelings of competence in physics for both girls and boys

Bunce \& Gabel (2002)	To examine the impact of teaching the particulate representation of chemistry on achievement and whether this varies by gender	447 Grades 10 and 11 students taught by 10 high school teachers from 10 US schools	Pre-post testing of treatment and control groups taught 3 2-week chemistry modules; team action research approach	Being taught the particulate nature of matter increased females' achievement but not males'
$\begin{aligned} & \text { Zohar \& Sela } \\ & \text { (2003) } \end{aligned}$	To explore gender issues that come up in Israeli Advanced Placement (AP) physics classes	400 high schools in Israel, high achieving students, 25 girls and 25 boys in Grade 12 physics class in an Israeli city	Analysis of matriculation scores between 1989 and 2000 from large national database, semi-constructed interviews with students	Girls participate less than boys in AP physics but perform similarly; girls were deterred by competitiveness and sought deep conceptual understandings
Rennie (2003)	To examine the gender-inclusivity of a curriculum segment with a pirate theme	31 children (12 with special needs) in Year 2/3 class in Australia	Classroom observations, teacher interviews, informal conversations with students, videotape of 1 class, student work	The curriculum topic of pirates allowed students to examine and challenge dominant gender discourses
 Bronshtein (2005)	To examine teachers' knowledge and views about gender gaps in physics participation	25 physics teachers from 25 high schools in a middle to high middle class, ethnically diverse Israeli city	Semi-structured teacher interviews	Most teachers underestimated the scope and importance of the gender gap in physics and did not know about gender-inclusive practices
 Yarden (2005)	To analyze children's science and technology questions submitted to an Israeli television program	1,676 questions submitted by children ages 9-12	Classification of questions, overall and by gender	Biology questions were most popular, especially for girls, boys submitted more questions; there were gender differences in types of questions
Christidou (2006)	To examine the science-related interests and out-of-school experiences of Greek secondary students	583 Grade 9 Greek students from 27 schools across the country	Closed-response survey questionnaires	Girls were more interested in biology and health and boys in society and technology; girls had more out-ofschool experiences with using instruments and devices, exploring nature, cuisine, and handicraft, boys with manual work and computers
Zohar (2006)	To analyze the overlap between the feminist concept of "connected knowledge" and the current science and math education reform idea of "learning for understanding"	NA	Theoretical Discussion	The concepts of connected knowledge and learning for understanding are similar; linking the two has the potential to promote both scientific literacy and gender-fair education
Baram-Tsabari, Sethi, Bry, \& Yarden (2006)	To analyze children's science questions submitted to an international Ask-A-Scientist website	1,555 questions submitted by Grades 4-12 children	Classification of questions, overall and by gender	Biology questions were most popular, especially for girls, girls submitted more questions but fewer with age and asked more school-related questions than boys

Table 3
Girls and Science Review Theme 3- Nature and Culture of Science
$\left.\begin{array}{lllll}\hline \text { Author and year } & \text { Purpose of study } & \text { Participants and Setting } & \text { Methods/Methodology } & \text { Major Findings } \\ \hline \text { Haggerty (1995) } & \begin{array}{l}\text { To highlight the importance of } \\ \text { power in gender and science issues } \\ \text { and to examine student teachers' } \\ \text { views of science and of gender } \\ \text { issues }\end{array} & \begin{array}{l}\text { 26 student teachers at a Canadian } \\ \text { university }\end{array} & \begin{array}{l}\text { Theoretical discussion and action } \\ \text { research using interviews and } \\ \text { informal conversations }\end{array} & \begin{array}{l}\text { Issues of power should be addressed } \\ \text { in teacher education; student teachers } \\ \text { viewed science in various ways, and } \\ \text { many were not concerned with gender } \\ \text { issues }\end{array} \\ \text { Matthews (1996) } & \begin{array}{ll}\text { To examine students' and teachers' } \\ \text { images of scientists }\end{array} & \begin{array}{l}242 \text { Years 7, 8, and 10 students from } \\ 6 \text { schools, 34 trainee teachers }\end{array} & \begin{array}{l}\text { Drawings of 2 scientists per student, } \\ \text { open-response questionnaires }\end{array} & \begin{array}{l}\text { 66\% of scientists drawn by students } \\ \text { were male, but most students did not } \\ \text { feel science was a boy's subject; 73\% } \\ \text { of trainee teachers drew one male and }\end{array} \\ \text { one female scientist }\end{array}\right]$

Newton \& Newton (1998)	To examine students' images of scientists over time	1,000 mostly White children ages 4+ to $11+$ years from 35 classes in 5 schools in the north-east of England	Draw-a-Scientist Test compared between 1990 and 1996	At both time points, most children drew stereotypical, male images of scientists, and this trend increased with age
Hughes (2000)	To examine the extent to which the socioscientific aspects of a Science-Technology-Society (STS) curriculum are marginalized and the implications of this for inclusivity	Students and teachers using Salters' Advanced Level Chemistry course (an STS curriculum) in the UK	Analysis of Salters' curriculum using data from a prior case study	The socio-scientific aspects of the Salters' curriculum were treated as peripheral to abstract scientific concepts, which inhibits inclusive science education
Gilbert (2001)	To describe a theoretical framework for looking at the problem of gender and science education in new ways	NA	Theoretical discussion	In order to solve the problem of gender and science, we need to deconstruct the terms "gender" and "science"
Letts (2001)	To illustrate the masculinist and heteronormative nature of primary school science	NA	Theoretical discussion	Pedagogy, curriculum, and policy provide examples of the masculinist and heteronormative nature of primary school science
Chinn (2002)	To explore the influence of cultural ideas about gender on Asian women in science and engineering	4 Chinese and Japanese women studying science and engineering at the college or graduate level	Narrative interviews	Patriarchal cultural values were challenges for women pursuing nontraditional paths; women's but not their parents' beliefs were impacted by gender equity efforts
Bianchini, Johnston, Oram, \& Cavazos (2003)	To examine how beginning teachers incorporate the nature of science and equitable teaching practices into their classes	3 beginning high school science teachers recently graduated from teacher education program	Critical ethnographic methods including videotapes of classes and semi-structured interviews, used to construct case studies	Teachers addressed who does science and how but not the social and cultural influences on scientific knowledge and practice
Carlone (2004)	To examine girls' participation in a reform-based physics curriculum designed to broaden ideas about science and scientists	28 mostly White Grades 11 and 12 students in 1 Active Physics class in an upper-middle class suburban town in the US	Ethnography using 6 weeks of participant observation, informal conversations, classroom artifacts, surveys, interviews with students, teachers, and administrators, and student focus groups	The Active Physics curriculum both challenged and reinforced prototypical meanings of science; girls resisted science meanings that jeopardized their identities as good students
Capobianco (2007)	To examine teachers' attempts to apply feminist ideas about the nature of science, science teaching, and science education to their practice	3 female high school chemistry and biology teachers in urban, rural, and suburban schools in western Massachusetts	Collaborative action research and narrative inquiry using semistructured interviews, discussions, observations, and documents	Teachers were enthusiastic about using feminist ideas in their classrooms and did so in diverse ways

Table 4
Girls and Science Review Theme 4- Identity

Author and year	Purpose of study	Participants and Setting	Methods/Methodology	Major Findings
Volman, van Eck, \& ten Dam (1995)	To deconstruct the discourse on girls, science, and technology common in Dutch research	NA	Theoretical discussion	The "problem of girls in science and technology" is produced by the way it has been approached by researchers; deeper examinations of gender and gendered identities is needed
Solomon (1997)	To partially review the field of gender and science and explore the factors that influence females' choices around pursuing science	NA	Overview of gender and science field highlighting certain statistical analyses, theoretical discussion	Factors related to identity, culture, age, and solidarity with gender groups influence girls' and women's choices to pursue science
Gaskell, Hepburn, \& Robeck (1998)	To present three versions of a gender-equity project in order to examine the impact of the way researchers report and discuss their work	20 high-achieving Grade 10 students in British Columbia	Interviews with students before and after the implementation of a curriculum module on electricity, classroom observations, collection of student assessments	Three versions of the same study yielded different conclusions and took into account the complexities and uncertainties in the data to varying degrees
Hatchell (1998)	To examine the impact of encouragement on female students' positioning in science class	43 Year 10 females from 3 schools in an Australian metropolitan area	Individual in-depth interviews, open-ended questionnaires, participatory observation	Encouragement and high teacher expectations allowed female students to position themselves as high achievers in science
Bianchini, Helms (2000)	To examine science teachers' and scientists' views and experiences of gender and ethnicity issues and their implications for inclusive practice	60 secondary science teachers and university scientists from 3 different studies	Analysis of data from 3 separate studies involving individual life history interviews, semi-structured interviews, and conversation groups	Teachers and scientists responded in diverse ways to issues of identity, the nature of science, perceptions of students, and inclusive practices that are placed along four continua
Brickhouse, Lowery, \& Schultz (2000)	To examine how 4 female students engage in science and form scientific identities in and out of school	4 Grade 7 African American girls from a low-achieving public school in eastern US town with student population 35\% African American, 65% white, and 15% on free or reduced-price lunches	Case studies over 18 months using interviews of students, parents, and teachers, classroom observations, student journals, and focus groups	The girls were confident in science and engaged with it in a variety of ways that were connected to who they are; their science classes limited the ways in which they could engage with science, and teachers were more positive towards girls with more conventional gender identities

$\left.\begin{array}{lllll}\begin{array}{ll}\text { Brickhouse } \\ \text { (2001) }\end{array} & \begin{array}{l}\text { To propose a model of learning that } \\ \text { is consistent with feminist } \\ \text { perspectives on science education }\end{array} & \text { NA } & \begin{array}{l}\text { Theoretical discussion }\end{array} & \begin{array}{l}\text { Situated cognition is an up-and- } \\ \text { coming model for understanding } \\ \text { learning from a feminist perspective, } \\ \text { in that its focus on identity formation } \\ \text { makes gender and other aspects of }\end{array} \\ \text { identity integral to learning }\end{array}\right]$

